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ABSTRACT Haptic affection plays a crucial role in user experience, particularly in the automotive industry
where the tactile quality of components can influence customer satisfaction. This study aims to accurately
predict the affective property of a car door by only watching the force or torque profile of it when
opening. To this end, a deep learning model is designed to capture the underlying relationships between
force profiles and user-defined adjective ratings, providing insights into the door-opening experience. The
dataset employed in this research includes force profiles and user adjective ratings collected from six
distinct car models, reflecting a diverse set of door-opening characteristics and tactile feedback. The model’s
performance is assessed using Leave-One-Out Cross-Validation, a method that measures its generalization
capability on unseen data. The results demonstrate that the proposedmodel achieves a high level of prediction
accuracy, indicating its potential in various applications related to haptic affection and design optimization
in the automotive industry.

INDEX TERMS Car door torque profile, user experience, haptic feedback, human haptic perception, deep
learning.

I. INTRODUCTION
The automotive industry increasingly emphasizes user expe-
rience, focusing on the physical sensations and emotions
drivers and passengers feel when interacting with different
aspects of a vehicle [1], [2]. Among these interactions, the
tactile experience of operating a car door is crucial, as it
serves as the first point of contact between the user and the
vehicle [3]. The way a door feels when opened or closed can
leave a lasting impression on the overall perception of the
car’s quality and craftsmanship.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianquan Lu .

Given the importance of this initial interaction, car
designers would greatly benefit from a virtual evaluation
system capable of predicting the affective response users
may have when interacting with car doors. Predicting user
perceptions based on early-stage design information, such as
the physical properties of door components like hinge profiles
and force/torque distributions, could streamline the design
process by reducing the reliance on physical prototypes.

In automotive design, the physical attributes of a car
door significantly influence user experience [4], [5]. Similar
research in haptic feedback devices and consumer products
has shown that the tactile qualities of interfaces, such as knobs
and buttons, directly affect user satisfaction and perceived
quality [6]. However, the relationship between the physical
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FIGURE 1. Schematic representation of the sequential pipeline linking physical attributes of a car door to user perceptual experience.

attributes of a car door and their effects on affection remains
elusive, requiring a more in-depth analysis [7]. Moreover,
the tactile sensation of the vehicle interface can significantly
vary depending on factors such as assembly parts, tolerances
between components, and wear conditions [8]. Developing
a system that connects these physical attributes to the
user’s perceptual experience can be highly valuable. This
relationship can be conceptualized as a sequential pipeline
(see Fig. 1), which begins with the specifications of car door
components and leads to the final user experience.

The first stage, Door Parts Space, represents the
physical specifications and structural attributes of the door
components (e.g., total weight, center of mass, hinge
profile, joint friction, etc.). These attributes contribute to
the dynamic behavior of the door during its operation,
such as opening and closing, which can be described as a
Torque and Force Profile. The physical dynamics of the door
determine this profile [5], [9]. The relationship between the
components of the car door and its profile is well-studied
and remains common knowledge in the automotive
industry [10], [11].

The torque profile is then converted into a User Perceived
Force, representing the force felt by the user while operating
the door. This conversion can be simulated or recorded
through sensors [12], [13]. Mechanoreceptors in the skin and
joints mediate this force perception, providing a predictable
link between the physical door and user interaction [14].

However, the subsequent step, converting the user’s
perceived force into Cognitive Attributes (e.g., judgments
of comfort, smoothness, or quality), involves the user’s
cognitive process, making it less predictable. Human cogni-
tive perception is influenced by individual differences, prior
experiences, and contextual factors, leading to variability
in subjective evaluations [15]. Therefore, this step requires
well-designed perception studies involving human partici-
pants to model these subjective evaluations accurately.

Within this pipeline, much of the existing research
focuses on the relationship between door components
and torque/force profiles [16] —the Door Physics Space.
Although some studies have analyzed cognitive characteris-
tics [17], there is limited research on how these Door Parts

Space translate into the User Cognitive Processes. In other
words, while the physical aspects of the door’s operation are
well understood, the crucial step of predicting user experience
remains elusive. Successfully estimating the conversion from
the Door Physics Space to the Cognitive Attribute Space
would make such predictions possible.

While it is theoretically possible to establish a mapping
from the Door Parts to the Cognitive Attributes, it is imprac-
tical due to the large number of permutations required (every
single door part has to bemapped). Amore practical approach
is to focus on the relationship between Torque/Force Profile
Space and theCognitive Attributes Space. As indicated by the
Data-driven Estimation step in the pipeline (Fig. 1), using
real force profile data recorded from car doors allows us to
apply data-driven methods to estimate user cognition more
effectively. This approach simplifies the mapping process by
aggregating the effects of various door components into a
single force profile.

To address the challenges and bottlenecks in the field,
researchers have increasingly turned to machine learning
to model user perception from physical data. Advanced
algorithms can discover complex, non-obvious patterns
that are difficult to capture through rule-based approaches
[18], [19], [20]. Deep learning, in particular, has shown
strong performance in learning nonlinear mappings between
physical signals and subjective impressions across multiple
domains [21], [22], [23], but their application to modeling
user-perceived haptic qualities from real-world force signals,
such as those generated by car doors, remains largely
unexplored.

This study is positioned as a proof-of-concept to demon-
strate that user-perceived haptic attributes can be predicted
directly from physical force profiles, even with a limited
but diverse dataset of real cars. Specifically, we propose
a deep learning framework that uses a CNN-LSTM archi-
tecture to predict users’ cognitive impressions based on
door force profiles. The CNN captures local mechanical
variations, while the LSTM models the temporal evolution
of the signal. Human perceptual data was collected using
antonym-based haptic adjective pairs (e.g., ‘‘smooth–rough’’,
‘‘heavy–light’’), commonly used in haptics research.
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The key contributions of this paper are as follows:

• Formulation of the car door perception task as a
data-driven mapping from real-world torque/force pro-
files to user cognitive attributes, addressing a rarely
explored link between physical dynamics and haptic
perception in automotive UX.

• Introduction of a CNN-LSTM network specifically
adapted to model spatial and temporal characteristics of
door force signals for perceptual prediction, represent-
ing a novel application of deep learning in this domain.

• Design of a perceptual annotation method using
antonym-paired haptic descriptors, enabling the cogni-
tive labeling of mechanical interactions with structured
subjective ratings.

• Evaluation of generalization by testing the model
on unseen force profiles, demonstrating robustness to
perceptual variation across different vehicle types.

II. RELATED WORKS
This section provides an overview of the existing literature
related to the perception of car doors and the use of machine
learning in the automotive industry.

A. MACHINE LEARNING AND PERCEPTION OF CARS/CAR
PARTS
Machine learning techniques are used in various aspects
of automotive design, such as comfort, aesthetics, and
usability [18], [20]. By training models on large datasets
containing information about car designs and user feedback,
these studies have been able to identify patterns and
relationships that can inform the design process.

Machine learning has shown particular promise in the
prediction of users’ emotional responses to car designs.
Researchers have developed models that can accurately
predict users’ emotional reactions to different car designs
based on features such as color and shape [20]. This has
provided insights into the emotional aspects of automotive
design and has the potential to inform the creation of
more emotionally engaging vehicles. Machine learning has
been used to analyze the relationship between the physical
properties of cars and their perceived quality, such as the
perceived quality of sound produced by the engine [24], [25].
However, the application of machine learning in the context
of predicting haptic perception and emotions related to car
doors remains a relatively unexplored area.

B. THE ROLE OF EMOTIONS IN PRODUCT DESIGN
Emotions play a crucial role in shaping users’ perception of
products and their overall satisfaction [26], [27]. Affective
engineering has emerged as an interdisciplinary field that
aims to incorporate users’ emotions and preferences into
the design process, thereby enhancing the overall user
experience [28]. Some studies have explored the role of
emotions in the context of automotive design, focusing on
various aspects such as the interior environment, the driving

experience, and the vehicle’s appearance [29]. However, there
is still limited research on the role of emotions in the design
of car doors and their impact on users’ haptic perception and
satisfaction.

Car door design plays a critical role in the overall user
experience of a vehicle. Early research in this area focused
on the optimization of car door dynamics, with an emphasis
on improving the opening and closing characteristics [30].
This body of work has led to the development of various
techniques and approaches for optimizing car door design,
such as the use of advanced materials and manufacturing
processes.

Recently, there has been a shift in focus toward
understanding the relationship between car door design and
perception. Studies have explored the impact of car door
design on users’ perception of quality and luxury [21].
These investigations have revealed that users associate certain
design elements, such as the smoothness of the door opening
and closingmotion, with higher-quality vehicles. By adopting
such an approach, designers can create car doors that not
only perform well in terms of functionality but also evoke
positive emotions and contribute to an overall satisfying user
experience.

C. HAPTIC PERCEPTION IN AUTOMOTIVE DESIGN
Haptic perception, the sense of touch, plays a critical role
in how users experience and interact with products [31],
[32]. In automotive design, haptic perception encompasses
not only the tactile sensations experienced when touching
surfaces and materials [33] but also the kinesthetic feedback
associated with operating mechanisms [34], [35]. A better
understanding of haptic perception can help designers create
more satisfying and user-friendly experiences [36]. Despite
its importance, research on haptic perception in automotive
design has been limited, with few studies exploring the factors
that contribute to the perception of car door quality and the
emotions they evoke. By using machine learning techniques,
designers can create more intuitive and engaging interfaces
that cater to the diverse preferences and needs of users.

D. DATA-DRIVEN APPROACHES IN AUTOMOTIVE DESIGN
Data-driven approaches have gained traction in various fields,
including automotive design, where they enable designers to
make informed decisions based on empirical data [37], [38],
[39]. Researchers have used data-driven models for various
aspects of automobiles, such as improving the braking control
systems [40], or evaluating the health of electronic systems on
board [41].
Data-driven methods, combined with machine learning

techniques, can facilitate the development of predictive
models that account for the complex relationships between
product properties [42]. Despite the potential benefits, there
is still a need for more research on data-driven approaches
in the context of automotive design, especially regarding car
door perception and the emotions they trigger. Related work
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FIGURE 2. An overview of the overall study. Experiments with a car door provide the force and position tracking values as well as user ratings for
the perception of opening a car door. These data are used to train a CNN-LSTM model that predicts perceived ratings based on force profiles of
opening a car door.

in adjacent domains has demonstrated the effectiveness of
machine learning for tasks such as object detection, scene
classification, and domain adaptation using semi-supervised
techniques [43], [44], [45], [46]. These approaches highlight
broader trends in applying deep learning to physical interac-
tion modeling.

III. OVERVIEW
Figure 2 provides a summary of the different sections detailed
in this paper. This section presents a concise version of the
paper’s content, outlining the main topics in each of the
sections. Details are provided in the subsequent sections.

The main aim of the current study is to provide a method to
designers and engineers for predicting the cognitive attributes
of car doors without the need for prototyping. We use the
terms perception and perceptual attributes interchangeably
with cognitive attributes throughout the text. To this end,
Sec. IV details the dataset, experiments, and their procedures
for quantifying the perception of opening a car door.
The experiments start with collecting a diverse corpus of
adjectives to describe the perception of opening a car door,
proceed with selecting a limited and more relevant set, and
conclude with user ratings across a set of antonymously
paired adjectives.

The force and optical data collection setup for generating
the force profiles of opening car doors is explored in Sec.
V. The force profiles portray the amount of force required at
various stages of opening a door and are therefore represented
as a function of force and the angle of opening.

The data generated from user ratings and force profiles
are used as input to train a CNN-LSTM network, presented
in Sec. VI. The trained CNN-LSTM model can predict the

haptic perception of car doors based on their force profiles.
The predicting ability of the network is tested using LOOCV
(leave-one-out cross-validation) in Sec. VII.

IV. PERCEPTUAL ADJECTIVE RATING EXPERIMENT
The aim of this experiment was to describe the act of opening
a car door from a perceptual experience point of view. Users
provided ratings against a set of attributes that describe the
perception of opening a car door. The overall experiment can
be divided into three sub-experiments which were conducted
sequentially. First, users were asked to open a car door and
provide adjectives that can describe the perception of opening
a car door. These adjectives, along with adjectives gathered
from literature and other sources, were pooled together to
form a lexicon of adjectives. In the second experiment, users
selected the most appropriate adjectives from the lexicon
of adjectives. In the third experiment, users rated the act
of opening a car door against the selected adjectives in
experiment two. Details of the dataset and all experiments are
provided in the following subsections.

A. PARTICIPANTS AND DATASET
A total of 20 participants took part in the first and second
experiments, and 26 in the third. Around 75% of the
participants in all experiments were common, the remaining
were replaced due to non-availability. The majority of
the participants identified as males, while 10 out of the
combined 66 across all experiments identified as females.
Their average age was 27.5 years (range: 21 - 34). None of
the participants reported any disabilities or any other factors
that could prevent them from successfully participating in
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TABLE 1. The lexicon of adjectives built from four sources, i.e., literature,
Hyundai research, experiment, and domain expert. The overall list was
formed as a result of experiments 1 and 2.

the experiments. All participants were compensated with $15
USD per experiment.

A total of six cars were used in this experiment. A wide
variation of cars was included in the dataset to cover
the range from luxury to utility cars. The six cars used
in the experiment were the new K3 (Kia), K5 DL3 (Kia),
the new Grandeur (Hyundai), Genesis G90 (Hyundai),
Santafe 7-seater (Hyundai), and Sorento 5-seater (Kia).

B. EXPERIMENT 1: LEXICON OF ADJECTIVES
The aim of this experiment was to gather all possible
adjectives that can be used to describe the perception of
opening a car door. A total of four different sources were
used to establish the lexicon of adjectives. These sources were
literature, the research provided by Hyundai, the authors’
intuition/domain knowledge, and a user experiment.

In the experiment, users were asked to open the driver-side
front door with their left hand and open it all the way.
They were allowed to repeat the procedure if needed, and
there were no time restraints. The users were handed a
paper to write down all the adjectives that could describe
the perception of opening a door. They were informed that
they could comment on the motion of the door, its perceptual
aesthetics, overall feel, or any other aspect they deemed
important. Every user repeated this process for all the cars.

C. EXPERIMENT 2: SELECTION OF ADJECTIVES
The main aim of this experiment was to select the most
relevant adjectives that describe the perception of opening a
car door. The lexicon of adjectives contained 68 adjectives,

FIGURE 3. Scatter plot of adjective relevance (% score) ranked by
frequency. Color indicates score intensity, and bold labels highlight
adjectives selected by ≥20% of users. The dashed blue line marks the
20% threshold. Rank 1 (top) indicates the most frequently selected
adjective.

and it was not feasible or productive to continue with all 68.
This experiment was conducted to filter out the adjectives that
users considered relevant.

The users were asked to engage with the door of a car
and open it at will. They were provided with a list of all the
adjectives collected after the first two experiments. The users
had to decide whether a particular adjective was relevant to
opening the door of a specific car. The decision was either a
1 for yes or a 0 for no. All the users provided their own list of
relevant adjectives for each car.

1) RESULTS OF EXPERIMENT 1 AND 2
In the lexicon of adjectives, four different sources contributed
adjectives. Among these sources, the user experiment pro-
vided a total of 32 unique adjectives. Hyundai uses adjectives
for measuring the physical performance of a car door, eight of
these were usable for our purpose. Thirteen adjectives were
collected from prior literature [4], [47]. After analyzing the
above three sources, the authors included 14 more adjectives
based on their experience and knowledge of working in
this domain. They felt these could be useful additions to
the lexicon of adjectives. Combining all these sources, the
lexicon contained a total of 68 adjectives, which are provided
in Table 1.

The second experiment filtered out the most relevant
adjectives for describing the perception of opening a door.
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FIGURE 4. Averaged adjective rating for ten adjective pairs from
experiment 3. The error bars show the standard deviation for each bar.

Each adjective was scored by the users, and these scores were
averaged for all cars and users. Figure 3 shows the relevance
of each adjective. It was empirically decided to choose the
adjectives that were selected by at least 20% of the users.
A total of 25 out of the 68 adjectives were selected based on
this criterion. These were further used in experiment 3.

D. EXPERIMENT 3: ADJECTIVE RATING
The 25 adjectives selected after the second experiment were
divided into pairs of antonymous attributes to represent
the opposite ends of the same scale. Six adjectives were
similar in meaning and paired at the same end of the scale.
Heavy received the highest score from users in experiment 2,
however, there was no straightforward antonymous pairing
available from within the top 25 adjectives. Although
‘‘Light’’ was not among the top 25 adjectives selected by
users, it was included as a natural antonym to ‘‘Heavy’’
to preserve the semantic structure of the rating scale. This
ensured interpretability and enabled balanced regression
modeling across all adjective pairs. A total of ten pairs were
formed at the end of this exercise, as shown in Table 2.
In this experiment, users were provided with a list of the

selected ten adjective pairs located at the opposite ends of a
seven-point Likert scale. The task was to rate the perception
of opening a car door using these pairs. The same procedure
of opening the car door was followed as in the earlier
experiments. Each user rated all six cars in a randomized
sequence.

1) RESULTS OF EXPERIMENT 3
The data from experiment 3 were in the form of adjective
ratings for six cars rated against ten adjective pairs. The data
were averaged for all users and normalized onto a scale of
zero to 100. Adjective rating data for all cars and adjective
pairs are shown in Fig. 4.

V. FORCE PROFILE OF OPENING A CAR DOOR
In the psychophysical experiments users opened a car door
and provided perceptual ratings. The perceptual characteris-

TABLE 2. Ten adjective pairs used in the perceptual rating experiment.
Six adjectives were combined with semantically related terms to form
coherent perceptual pairs. ‘‘Light’’ was included as a natural antonym to
‘‘Heavy,’’ the most frequently selected adjective, though it was not among
the top 25 terms.

tics exhibited by an opening car door are highly dependent
on the physical aspects of the door. Therefore, a physical
signal that can describe the act of opening a door should be
considered significant. The force profile can be considered
an important physical aspect of opening a door. It refers to
the amount of force required to open (and close) the door at
different points in its range of motion. It takes into account
several factors that contribute to the perceptual characteristics
of a car door. It can be considered as the combined effect of
the weight of the door, its aerodynamics, and the shape of
the hinge that keeps it attached to the main frame. Therefore,
it was decided to use the force profile for predicting the
perceptual characteristics of opening a door. In the current
study, force profiles of the cars provided in IV-A were
recorded.

A. DATA COLLECTION SETUP
To record the force profile of the car door, we used an
ATI force sensor and an Optitrack Trio120 optical sensor.
The ATI force sensor was attached to the door handle, and
Optitrack markers were placed just beside the handle so that
they were visible to the cameras at all times. A one-time
position tracking of the door hinge was carried out for every
car. This was done to establish a reference point formeasuring
the opening angle. A user opened the door with their left
hand. The users were instructed to make a conscious effort to
maintain a constant velocity and avoid jerks. The force sensor
recorded the force required to open the door at different points
in its range of motion. The Optitrack Trio 120 was used to
track the movement of the door and the markers to provide
a visual representation of the door’s range of motion. The
setup is presented in Fig. 2. The data from both sensors
were synchronized based on timestamps. The force sensor
recorded data at 1 kHz while Optitrack provided position data
at an update rate of 80 Hz. The position data were upsampled
to match the force sensor update rate. A total of ten force
profiles were recorded for each car.

B. 1D FORCE PROFILES
The data collected from different cars was inconsistent
because it was collected by human users. The maximum
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FIGURE 5. Angle-normalized force profiles of the six cars used in this study (Top). The position tracking of the door opening is provided for K5,
Sorento, and Santafe for reference (Bottom).

opening angles of the cars were also variable. To make the
data more comparable and accurate, it was important to
normalize it and make it uniform across all cars.

The maximum opening angle for all the cars was capped
at 63◦, as most cars had a maximum opening angle below
this limit. For cars with smaller maximum angles, data were
zero-padded at the end. Since data were collected by human
users, the opening velocity was variable. This was normalized
by combining the position tracking data and force data. The
force data were divided into subsets corresponding to a range
of 1◦ of the angle. The subset of force data for each degree
was then downsampled and truncated to 10 data points. This
was done to make the data uniform across all cars and smooth
out outliers. A total of ten force data points were selected for
each degree of opening the car angle, resulting in a total of
630 data points for each car profile. A total of 10 recordings
were carried out per car, to providemultiple training instances
of the same data for the deep learning model. Force profiles
of all six car doors and position tracking of three car doors
are provided in Fig. 5.

VI. CNN-LSTM NETWORK
Statistical approaches, such as AR (Auto-regressive),
MA (Moving Average), ARMA (Auto-regressive Integrated
Moving Average), and their other variants are widely used
to process time series data, but these methods do not
always give the best results. The reason is that these

approaches do not take into account long-term temporal
dependencies [48]. While deep learning approaches, such
as recurrent neural networks (RNN), can effectively process
time-series data. However, even RNNs have their own
set of challenges, especially when it comes to dealing
with long input sequences. In such a case, RNN can
face a vanishing gradient problem during back-propagation.
This problem is well addressed by the Long Short-Term
Memory (LSTM) network and exhibited notable performance
in detecting long-short-term temporal dependencies [49],
[50]. Likewise, Convolutional Neural Network (CNN)
showed good prediction accuracy in numerous applications
related to image and speech processing such as image
segmentation [51] and speech-emotion recognition [52]
respectively by extracting spatial information.

Recent work has applied deep learning to haptic signal pro-
cessing for tasks such as surface texture classification [53],
high-frequency vibration synthesis [54], haptic attribute
estimation [48], and perceptual similarity modeling [55].
In particular, Awan et al. [48] employed a CNN-LSTM
architecture to estimate haptic attributes from tactile vibration
signals, showing that this hybrid design captures both local
spatial structure and long-range temporal dependencies.
Motivated by this, our study applies a similar dual-stream
network to force profile data, where CNN layers extract
short-term resistive patterns and LSTM layers model the
sequential dynamics of door motion. This structure aligns
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FIGURE 6. The architecture of the proposed CNN-LSTM network. This model takes the force profile of the door as input and predicts the
human-perceptual ratings associated with it.

naturally with the temporal nature of mechanical signals and
is well suited for perceptual prediction.

The proposed model uses this CNN-LSTM based archi-
tecture to predict perceptual attributes of car doors based on
force signals generated during door opening, as described
in Section V. In this formulation, the one-dimensional force
profiles are treated as time-series signals, allowing the
model to learn both short-term variations and longer-range
dependencies that may arise throughout the door-opening
motion. To facilitate this, the architecture is designed as a
two-stream network operating in parallel, where each stream
can be considered a modular unit composed of a 1D-CNN
followed by an LSTM. This structure enables the model to
extract meaningful features from different aspects of the input
and jointly contribute to the final prediction. The following
section describes the architecture of the proposed 1D-CNN
and LSTM modules.

A. 1D CONVOLUTIONAL NEURAL NETWORK
Convolutional Neural Networks (CNNs) are widely used for
analyzing structured signals due to their ability to extract
hierarchical features through local receptive fields. In this
work, a 1D-CNN module is employed to extract spatial
features from the input force profile, which is treated as
a 1D time-series signal. This module is particularly adept
at identifying localized patterns in the profile, such as
sharp force changes or periodicities, which may corre-
spond to hinge geometry, resistance variations, or detents
in the door mechanism. These features are critical for
modeling the perceptual characteristics associated with door
dynamics.

The architecture of the proposed 1D-CNN consists of four
convolutional layers and two max pooling layers. The first
convolutional layer takes the raw force profile of length
630 as input and applies 256 filters with a kernel size of
1 × 3 and a stride of 1. A max pooling layer with a

pool size of 2 follows to downsample the feature map and
reduce computational complexity. The output is then passed
through three additional convolutional layers with 128, 128,
and 64 filters, respectively, each followed by non-linear
activation. Another max pooling layer is inserted after the
final convolutional layer to further reduce dimensionality and
improve model generalizability. The final feature map from
this CNN module is flattened and forwarded to the feature
fusion layer for integration with the LSTM module.

B. LONG SHORT–TERM MEMORY (LSTM)
Long Short—Term Memory (LSTM) networks are a special-
ized class of recurrent neural networks (RNNs) designed to
capture long-range temporal dependencies in sequential data.
Unlike conventional RNNs, which suffer from vanishing
or exploding gradients during training, LSTMs employ a
memory cell and gating mechanisms to preserve information
across extended time steps [49]. These properties make
LSTMs well-suited for modeling time-varying physical
signals such as force profiles, where the relationship between
earlier and later values in the sequence is often meaningful.

In contrast to the 1D-CNN module, which is effective at
capturing local spatial features and abrupt changes in the
force signal, the LSTM is designed to learn global temporal
dependencies that develop across the full door-opening
trajectory. By combining these complementary capabilities,
the overall model benefits from both local pattern detection
and long-term sequence modeling.

The LSTMmodule in the proposed architecture consists of
three stacked layers. The first LSTM layer contains 128 units
and processes the input force profile directly. This is followed
by two additional LSTM layers, each with 64 units. A max
pooling operation with a pool size of 2 is applied after the
final layer to reduce the temporal resolution and to regularize
the feature representation. The input to the LSTM module is
a one-dimensional sequence of n = 630 samples, where each
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element corresponds to the force required to open the car door
at a specific angular displacement.

The internal operations of an LSTM unit at time step t are
defined by the following equations:

it = σ (Wi(xt + ht−1) + bi) (1)

ft = σ (Wf (xt + ht−1) + bf ) (2)

ot = σ (WO(xt + ht−1) + bO) (3)

Ct = ft ⊙ Ct−1 + it ⊙ tanh(Wc(xt + ht−1)) (4)

ht = ot ⊙ tanh(Ct ) (5)

Here, it , ft , and ot denote the input, forget, and output
gates, respectively; Ct represents the cell state and ht is
the hidden state at time t . The symbol ⊙ denotes element-
wise multiplication, and σ refers to the sigmoid activation
function. The matrices W and vectors b are trainable
parameters of the network.

The resulting features from the final LSTM layer, after
pooling, is flattened and is then forwarded for integrationwith
the spatial features extracted by the CNN module.

C. MODEL TRAINING METHOD
The final network fuses the outputs from the CNN and
LSTM branches after flattening. These are concatenated to
form a unified feature vector that serves as input to a fully
connected head. Specifically, let FCNN and FLSTM denote the
flattened feature vectors from the CNN and LSTM streams,
respectively. These are concatenated as F = [FCNN,FLSTM],
forming a joint spatio-temporal representation.

This vector is passed through two dense layers with 64 and
32 hidden units, respectively. Each layer uses the ReLU
activation function to introduce non-linearity:

z1 = ReLU(W1F + b1), z2 = ReLU(W2z1 + b2) (6)

The final prediction layer uses a linear activation to
produce a 10-dimensional output corresponding to the
predicted perceptual attributes:

ŷ = W3z2 + b3 (7)

Here,Wi and bi are the learnable weights and biases of the
network.

The model was trained using Root Mean Square Error
(RMSE) as the loss function and optimized using the
Adam optimizer (learning rate 0.001). A consistent training
protocol was applied across all folds in the Leave-One-
Out Cross-Validation (see Sec. VII-A) setup: the model was
re-initialized and trained from scratch for each fold using
the same hyperparameters. Training was performed for up
to 100 epochs with early stopping based on validation loss,
using a patience of 10 epochs to prevent overfitting. The
hyperparameters were selected through rigorous empirical
testing of different settings, evaluated based on convergence
stability and validation performance. For each fold, the model
checkpoint with the lowest validation loss was saved and used
for final evaluation.

VII. EVALUATION
The purpose of the system under consideration is to precisely
predict the haptic perception of opening a car door through
the analysis of its force profile.

In order to gauge the model’s ability to predict
door-opening attributes for unseen force profiles, a numerical
evaluation is conducted using Leave-One-Out Cross-
Validation (LOOCV). This evaluation gauges the system’s
ability to predict haptic attribute values for force profiles
it has not encountered before, measuring its predicting
proficiency.

A. LEAVE-ONE-OUT CROSS VALIDATION
Cross-validation is a powerful technique for assessing a
model’s predictive performance on unseen data. It evaluates
the model’s ability to generalize its learning from the training
data to new, unseen data. One form of cross-validation
is k-fold cross-validation, where the data is divided into
k subsets and a fixed number of subsets are used for training
while the rest are used for testing. This process is repeated
until all subsets have been used for testing. Leave-One-Out
Cross-Validation (LOOCV), a specific type of k-fold cross-
validation with k = 1, trains the model on all instances
except for one, which is used as the test data. This method
comprehensively evaluates the model, ensuring that every
item in the dataset is used as a test case. LOOCV can
be considered as a computation-heavy evaluation method,
however, it was selected for this study’s in-depth evaluation
of the proposed model, as the dataset used is not considered
large in the machine learning field.

The dataset described in the Sec: IV-A, consisting of force
profiles and user adjective ratings for six cars, was employed
for LOOCV. According to LOOCV, the model was trained
using five cars in the dataset, with the remaining one as the
test set. However, initial tests revealed that the force profile
of Kia K3 was significantly different from the others, and
including it in training reduced overall accuracy. Excluding
it not only improved overall performance but also provided
a more rigorous test case to assess the model’s ability to
generalize to distinct force profile distributions. As a result,
K3 was excluded from all training folds and used only as an
unseen test case to assess generalization to distinct vehicle
dynamics.

To further support this decision, we analyzed K3’s
peak force amplitudes across three perceptually relevant
angle segments: Bump 1 (5–25◦), Bump 2 (25–45◦), and
Bump 3 (45–64◦). The Z-scores of K3 relative to the
group mean in these regions were –2.15, –10.12, and –8.92,
respectively, indicating substantial deviation from other
vehicle profiles(A Z-score quantifies how many standard
deviations a value lies from the mean of a distribution.).
These values confirm that K3’s force trajectory lacked the
transitional peaks observed in other vehicles, justifying its
treatment as an out-of-distribution example for evaluating
model generalization.
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FIGURE 7. Leave-one-out Cross-Validation results for each of the six cars used in this study. The predicted and human-rated values are presented for ten
adjective pairs.

TABLE 3. Mean absolute error (MAE) for all cars and adjective pairs using the LOOCV method.

To keep the training data size consistent in the fold where
K3 was tested, Santafe was randomly excluded. This process
was repeated until all cars had been used as test sets. The
prediction results from LOOCV for the proposed model are
illustrated in Fig. 7.

The Mean Absolute Error (MAE) was calculated for all
the adjective pairs and all the cars to better understand the
prediction results, as shown in Table 3. The MAE offers a
more direct and intuitive summary of the prediction results.
Table 3 shows the individual prediction accuracy for each car
against each of the adjective pairs. The MAE % column on

the right shows the averaged prediction error for each car,
while the MAE % column at the bottom shows the averaged
prediction error for each adjective pair. It can be seen that the
average prediction accuracy for most of the cars and adjective
pairs is around 10 % or below. The only outliers (high
prediction MAE) are the averaged results for K3 (21.41 %),
and the adjective-pair of Cheap-Classy (20.36 %).

B. ERROR ANALYSIS
Figures 8 and 9 show an analysis of the predicted results
in terms of the standard deviation of user ratings. The
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FIGURE 8. Analysis of the predicted ratings based on standard deviation
in user ratings from the perspective of different cars in the dataset. The
red line indicates a perfect prediction of the user rating by the algorithm.
The red and green bands represent half and the first standard deviation
of the user ratings.

x-axis represents the user ratings, and the y-axis represents
the corresponding prediction by the algorithm. In an ideal
scenario all the data would be located on the diagonal
line of identity (red line), shown in Figs. 8 and 9, where
the predicted values and the user ratings would be the
same. However, in the current case values are scattered
around this trend line due to prediction errors. A point
above the line of identity would signify that the algorithm
under-predicted the user rating, while a point below the line
of identity means that the predicted value was above the user
rating.

Analysis of the user ratings from Sect. IV-D shows that
the user ratings contained variations across participants.
These variations are expected as haptic perception can
vary from one person to another. In order to account for
these variations, the average standard deviation across the
six cars and the adjective pairs was calculated for all
participants. The standard deviation for the cars was 22.0 for
Genesis G90, 22.89 for Grandeur, 20.95 for K3, 19.30 for
K5, 20.54 for Santafe, and 20.11 for Sorento. Similarly,
the average standard deviation for the adjective pairs was
22.17 for Jerky-Easy to operate, 21.54 for Smooth-Rough,
22.20 for Frictional-Frictionless, 23.48 for Hard-Easy to
open, 18.31 for Balanced-Unstable, 22.46 for Soft-Hard,
13.34 for Cheap-Classy, 21.73 for Damped-Recoiling,
20.88 for Discordant-Consistent, and 23.57 for Heavy-Light.
The standard deviation averaged for all cars or all adjective
pairs was 20.96. The red and green bands in Figs. 8 and 9
highlight the half and first standard deviation from the ideal
prediction line. It can be seen that a majority of the data points
fall within the first standard deviation across both figures.
The consistent outliers in both cases are the data points for
K3 among cars, and Cheap-Classy among adjective pairs, as
expected.

FIGURE 9. Analysis of the predicted ratings based on standard deviation
in user ratings from the perspective of the adjective pairs. The red line
indicates a perfect prediction of the user rating by the algorithm. The red
and green bands represent half and the first standard deviation of the
user ratings.

VIII. DISCUSSION
We developed a CNN-LSTM model capable of predicting
users’ haptic perceptions of car doors based on their force
profiles. The model achieved a prediction MAE of around
10%, indicating its effectiveness in translating physical
interaction data into subjective user evaluations. These
findings suggest that our system can help designers and
engineers assess the perceptual attributes of car doors in the
early stages of development, reducing the reliance on physical
prototypes.

A. TRANSLATING FORCE PROFILES INTO COGNITIVE
ATTRIBUTES
In this study, we established a link between the Torque/Force
Profile Space and the Cognitive Attributes Space for car
doors. On one hand. the Torque/Force Profile Space repre-
sents the physical interaction data generated when opening
car doors, which we collected using force sensors and optical
trackers. This data captures physical dynamics such as the
weight, resistance, and smoothness of door operation. On the
other hand, we defined a Cognitive Attributes Space based on
user feedback about the physical attributes. Participants were
asked to rate their haptic experiences with car doors using a
set of antonymous adjective pairs to quantify their subjective
evaluations. This established a Cognitive Attributes Space
tailored to the unique perceptual dimensions of car door
operation. Finally, we used a CNN-LSTM model to connect
these two spaces. The model associated the physical dynam-
ics of car doors with cognitive attributes, demonstrating
that the force profiles contain sufficient information to
accurately predict user perceptions. The parallel CNN-LSTM
configuration was selected after rigorous empirical testing of
alternative model variants. Architectures using only CNN or
LSTM components were found to be less stable or provided

119736 VOLUME 13, 2025



M. I. Awan et al.: Quantifying Haptic Affection of Car Door Through Data-Driven Analysis of Force Profile

lower prediction accuracy across validation folds. In contrast,
the combined design yielded more reliable performance by
leveraging the complementary strengths of convolutional
and recurrent layers. This architectural choice also aligns
with prior findings in haptic signal modeling [48], where
dual-stream networks have shown improved generalization
across perceptual tasks.

B. INTERPRETING PREDICTION ERRORS
Most predictions showed an MAE of around 10% or lower
(Fig. 7, Table 3). Although the Just Noticeable Difference
(JND), defined as the smallest detectable difference between
two stimuli [56], is not explicitly reported for haptic attributes
in the literature, previous work suggests that perceptual
boundaries are not sharply defined [57]. To estimate how
much MAE is perceptually acceptable, we calculated the
average standard deviation of participant ratings, which was
20.96. Since this deviation represents the natural variability in
user perception, a prediction MAE of 10% likely falls within
the range of perceptual similarity and can be considered
insignificant. Some model predictions deviated significantly
from the ground truth, likely due to non-linear or complex
relationships between input features and adjective pairs. User
bias, such as preference for a specific car ormisunderstanding
of adjective pairs, may have influenced these discrepancies.
In addition to statistical reliability, this level of accuracy
offers practical relevance. A 10% MAE, which is smaller
than the average variability in human ratings, suggests that
the model can replicate user judgments with meaningful
precision. Designers can leverage this capability to compare
hinge or latch configurations and make perceptual tuning
decisions early in development, thereby reducing the reliance
on repeated physical prototyping.

Haptic illusions may also contribute to such mismatches.
These are perceptual phenomena where the experienced
sensation differs from the physical stimulus, often due to
cognitive factors such as expectation, familiarity, or context.
Although participants were instructed to focus solely on
physical interaction, such effects may still occur in subtle
ways. For example, variations in motion timing or acceler-
ation may influence perception even when force levels are
comparable. While not explicitly addressed in this study,
these phenomena will be explored further in future work.
Similarly, prejudice or admiration for a car model could skew
the results.

C. LIMITATIONS AND FUTURE WORK
This study was designed as an initial proof of concept to
investigate whether perceptual attributes can be predicted
directly from real-world force profiles. Although the dataset
includes a mix of economy, mid-range, and luxury vehicle
models, we acknowledge that six cars may not fully capture
the variability in car-door dynamics. The number of adjec-
tives was extensive, and the use of six different cars provided
a reasonable diversity; however, it could be a limiting factor.

Additionally, the use of real cars may have introduced visual
bias in the perceptual ratings, as participants could not be
fully isolated from the visual appearance of the cars, despite
instructions to ignore it. A potential solution to both issues
is the development of a door simulator, which could generate
diverse force profiles and provide a controlled environment
for consistent and unbiased data collection. This approach
would allow for greater data diversity and more accurate
modeling of the relationship between Torque/Force profiles
and the Cognitive Attributes.
In support of this need, we also observed specific cases

where prediction error was notably higher, offering insight
into the model’s current boundaries. Higher prediction error
observed for the ‘Cheap–Classy’ adjective pair may reflect
greater subjective variability in user interpretation, especially
for abstract, brand-associated terms. Similarly, elevatedMAE
for K3 aligns with its statistical and perceptual deviation from
the rest of the dataset. These results suggest opportunities to
improve robustness by expanding the dataset to cover a wider
range of vehicle types and perceptual constructs.

Future work could focus on expanding the dataset to
include a wider range of vehicles and adjectives, investi-
gating additional factors that affect perceptual ratings, and
enhancing the modeling approach by exploring alternative
or more advanced deep learning architectures. Incorporating
more detailed physical features, such as door weight and
inertia, may also improve the accuracy and robustness of the
predictive model. In addition, methods that explicitly account
for perceptual variability, such as weighting the loss function
based on user agreement or incorporating rating consistency
into the training process, could be explored to improve model
reliability, particularly for subjective or emotionally driven
attributes.

IX. CONCLUSION
The current study presents a deep learning model for
predicting the perceptual properties of opening a car door
by analyzing force profiles. The perceptual attributes were
provided by human participants, whereas the force profiles
were recorded by sensors attached to a car door. The
performance of the model was evaluated using LOOCV,
and the results indicated a significant degree of accuracy in
predicting perceptual attributes in most cases. These findings
highlight the potential applications of the model in the
automotive industry for perceptual design evaluation of car
doors.
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