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Abstract
In safety training simulators, realistic haptic feedback is essential to make people construct accurate situation awareness 
through experiencing. In this regard, this paper presents a new and innovative system that provides the haptic experience of 
falling objects on user’s head during an earthquake. Special focus was on the accurate reproduction of impact feedback when 
various objects fall on the head. To this end, we propose a novel data-driven approach. This approach first collects 3-axis 
acceleration signals during real collision under several impact velocities. Afterward, 3D acceleration data is abstracted to a 
1D acceleration profile using our novel max–min extraction approach. The impact signal for an arbitrary velocity is inter-
polated using a deep convolutional bidirectional long short-term memory encoder–decoder model. Rendering hardware is 
also implemented using high performance voice-coil vibrotactile actuator. Numerical and subjective evaluations are carried 
out to evaluate the performance of the proposed approach.

Keywords Impact feedback · Data-driven approach · Convolutional bidirectional long short-term memory encoder–
decoder · Max–min extraction

1 Introduction

An earthquake is a devastating natural disaster that occurs 
suddenly and with great intensity. On average, each year, 
1676 earthquakes with a magnitude of five or higher occur 
worldwide (Development of the number of earthquakes 
2020). Earthquakes result in destructive losses, affecting 
both property and personnel. The extensive damage and 
injuries underscore the importance of earthquake prepar-
edness and protection. Moreover, current earthquake fore-
casting methods are not advanced enough to provide pre-
cise advance warnings. Consequently, people have limited 

opportunities to evacuate before an earthquake occurs. Until 
a time when earthquakes can be predicted well in advance, 
one of the possible solutions for reducing personnel injuries 
is to introduce effective earthquake simulation exercises (Li 
et al. 2017). In these exercises, people can experience simu-
lated earthquakes and learn to respond to different kinds of 
situations that may occur.

Traditionally in schools, earthquake safety has been 
taught through exercises and emergency safety drills. This 
approach faces the issue of lacking standardization (Ramirez 
et al. 2009). Since natural disasters are relatively rare occur-
rences, many people do not take safety exercises seriously. 
Reports indicate that many of these practices fail to account 
for various factors that may arise in real emergency situa-
tions. Consequently, the exercises conducted in schools may 
not be sufficiently effective for earthquake safety training (Li 
et al. 2017; Ramirez et al. 2009). Several scenarios can occur 
in an earthquake event. One of the most common scenarios, 
even in lighter earthquakes, is the falling of objects from tab-
letops, cupboards, or ceilings. Sometimes in the spur of the 
moment, people do not realize the extent of this danger and 
may put themselves in harm’s way. People easily get bewil-
dered and cannot comprehend the danger of falling objects. 
However, training people through simulated exercises to 
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respond properly to such situations can significantly reduce 
accidents caused by falling objects.

Various researchers have attempted to enhance the real-
ism of earthquake training simulations and better replicate 
emergency situations. For this purpose, different virtual real-
ity (VR) systems were designed where a user can control 
an avatar in a virtual environment during earthquakes, e.g., 
Li et al. (2017), Gong et al. (2015), Liang et al. (2018), 
Lovreglio et al. (2018), Xu et al. (2019). Different kinds 
of exercises and drills were implemented and users were 
asked to practice the scenarios in the virtual environment. 
Nevertheless, all these efforts did not provide any haptic 
feedback to the user, instead, they relied on the visual and 
aural senses only. The inclusion of haptics, in addition to 
visual and auditory elements, could greatly enhance realism. 
Consequently, incorporating haptic feedback can enhance 
the interaction with the system and improve the overall expe-
rience during virtual earthquake safety drills. In earthquake 
readiness training, trainees need to experience and respond 
to various physical sensations and impacts. Realistic haptic 
feedback can induce stress and emotional responses similar 
to those experienced during real earthquakes. This aspect 
is crucial for training individuals to manage their emotions, 
stay focused, and make critical decisions under stress, as 
earthquake situations often involve high-pressure scenarios.

In this regard, to provide the experience of real earth-
quake scenarios that can be used during safety-training sim-
ulated exercises, we propose a new and innovative system 
that renders realistic impact feedback of falling objects on 
head during an earthquake in the VR environment. The sys-
tem is constructed to provide rich impact feedback to make 
users construct a real-like experience that may help users 
to cope with the situation while keeping them safe. This is 
one of the important merits of a VR-based training system 
where a trainee is provided with an in-advance experience 
of a dangerous situation without actually putting him/her in 
real danger. It is known that feedback on head is well suited 
for safety training exercises and guidance since the head is 
sensitive to mechanical stimuli (Gilliland and Schlegel 1994; 
Kaul and Rohs 2017). Feedback on the head also greatly 
enhances realism (Kaul and Rohs 2017). In this work, impact 
feedback is provided in the form of a 1D impact acceleration 
profile, which conveys a clear sensation of collision with a 
strong, short, and clean impulse of force. Realistic impact 
feedback includes a small vibration signal along with the 
impulse signal (Park et al. 2019; Lopes et al. 2015).

In general, haptic feedback is modeled and rendered based 
on two approaches: physics-based parametric approach [e.g., 
Park et al. (2019), Park and Choi (2017)] and data-driven 
approach [e.g., Culbertson et al. (2014), Yim et al. (2016), 
Osgouei et al. (2020)]. Both approaches have their own ben-
efits and limitations. In the physics-based approach, haptic 
responses are defined by the coefficients of physics-based 

parametric models and simulated using the parametric 
model during rendering. For instance, vibrotactile feedback 
is produced by applying an exponentially decaying sinusoi-
dal model for collision events (Park and Choi 2017). While 
this approach is flexible and fast, its simulation accuracy 
is limited by the applied physics model. The model is usu-
ally simplified for efficiency, which often results in reduced 
realism of the feedback. In contrast, a data-driven approach 
generates feedback based purely on recorded signals with-
out considering underlying physical principles. It has the 
virtue of high realism in feedback, but lower flexibility is 
one of its drawbacks. The approach has been successful in 
different haptic simulations, e.g., Culbertson et al. (2014), 
Yim et al. (2016), Osgouei et al. (2020), Abdulali and Jeon 
(2016), Abdulali et al. (2018), Shin and Choi (2020). One 
major limitation with these methodologies is their inability 
to fully incorporate phase information. To address this issue, 
deep spatio-temporal network (DSTN) (Joolekha and Jeon 
2022) is proposed for haptic texture modeling and rendering.

In this work, we propose a novel deep network based 
data-driven approach in order to render the falling object 
impact feedback. This approach first collects time-series 
acceleration profiles produced when an object collides 
with a rigid and spherical object. For various objects, 
data-collection is done for different falling heights, i.e., 
different impact velocities. Afterward, we introduce 
a max–min extraction approach that converts the cap-
tured 3D acceleration signals to a 1D impact accelera-
tion profile. Additionally, experiments are performed to 
demonstrate the effectiveness of the proposed max–min 
extraction approach over the state-of-the-art DFT321 
approach (Park and Kuchenbecker 2019). The core part 
of the proposed data-driven approach is the deep learning-
based signal interpolation algorithm. To provide realistic 
impact feedback, the approach should accurately estimate 
the acceleration profile for any arbitrary impact velocity. 
Because the acceleration profile changes with variations 
in velocity, and it can result in a different feedback. There-
fore, to estimate the acceleration profile accurately, we 
formulate a multivariate sequential time series prediction 
model, which predicts the intermediate time-series accel-
eration profile based on the collected two adjacent accel-
eration profiles and given object velocity. Recent progress 
in deep learning, particularly Recurrent Neural Network 
(RNN) and Long Short-Term Memory (LSTM) models 
present some useful insights to solve sequence predicting 
problems. Motivated by these works, we design a deep 
Convolutional Bidirectional Long Short-Term Memory 
(ConvBi-LSTM) encoder–decoder framework to inter-
polate the acceleration signal appropriately for the given 
object velocity. For the given object velocity, the proposed 
model takes two neighboring impact acceleration profiles 
from the database (i.e., one with immediate lower impact 
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velocity and one with immediate higher impact velocity) 
as input along with the given velocity and predicts a new 
impact acceleration profile. The relationship among these 
signals is trained using the collected ground truth data. To 
the best of our knowledge, this is the first attempt to ren-
der realistic impact feedback using a deep learning-based 
data-driven approach. We adopt this deep learning-based 
interpolation over simple linear interpolation to handle 
signal complexity. In particular, our method successfully 
conducts interpolation between profiles with sparse input, 
full time series signal, and high-frequency components, 
which is tricky with simple linear interpolation in the time 
domain.

Furthermore, we also design a physics-based approach 
as a baseline method to compare the performance with the 
data-driven approach. In the physics-based approach, impact 
is represented as the energy of a collision between a person’s 
head and the falling object. The energy computation takes 
velocity as well as mass of the falling object as input, which 
is then used to estimate the amplitude of the impact. The two 
approaches are implemented on multiple rendering actua-
tor setups, i.e., voice coil actuators and push–pull solenoid. 
The proposed data-driven approach is evaluated numerically 
as well as perceptually with human participants. The major 
contributions of this work are summarized as follows.

• We designed customized interfaces for impact feedback 
rendering on head. Three different actuators, i.e., vibro-
transducer, haptuator, and push–pull solenoid are used.

• A virtual environment combined with the haptic interface 
that can be utilized for earthquake experience and safety 
training.

• To convert the three-axis acceleration signals into 1D 
acceleration profile efficiently and effectively, we present 
a data conversion approach called max–min extraction.

• Deep learning based data-driven approach for impact 
feedback rendering is presented, which employs the deep 
ConvBi-LSTM encoder–decoder framework for interpo-
lating the acceleration profile.

• Numerical evaluation with four different real objects to 
show the effectiveness of the proposed ConvBi-LSTM 
encoder–decoder-based interpolation. In addition, user 
studies are conducted for demonstrating the subjective 
and perceptual performance of the data-driven and base-
line physics-based approaches.

The rest of the paper are organized as follows. Prior studies 
performed in the field of haptic feedback on the head, hap-
tic feedback for safety purposes, and impact feedback-based 
approaches are discussed in Sect. 2. In Sect. 3, system and 
rendering hardware are presented. Data-driven impact feed-
back is explained along with the details of proposed deep 
encoder–decoder model in Sect. 4. Experimental evaluations 

are carried out to estimate the performance of both data-
driven and baseline physics-based approaches in Sect. 5. 
Finally, we summarize our contribution in Sect. 6.

2  Related works

This section discusses the techniques and methodologies that 
are used for haptic feedback on the head, haptic feedback for 
safety purposes, and feedback based on the impact signal.

2.1  Haptic feedback on head

Haptic feedback on the head is mainly provided for games, 
navigation, and guidance systems. A majority of these appli-
cations considered haptic feedback as a means of another 
information transfer channel, so they lack realism. For 
instance, Kaul and Rohs (2017) proposed a system for intui-
tive haptic guidance on the head through moving tactile cues 
(i.e., virtual objects, shockwaves, and particles) in both VR 
and AR environments. In their work, coin-type vibration 
motors were utilized in three concentric ellipses for feedback 
rendering. Similarly, Gallo et al. (2020) developed a navi-
gation system based on head scanning and provided simple 
binary feedback. In their approach, the vibration signal is 
provided as a penalty when the runner looks in the wrong 
direction at an intersection. Haptic feedback on the head also 
can be rendered using various modalities, i.e., vibrotactile 
feedback, pressure-based feedback, force-based feedback, or 
a combination of them. In Gunther et al. (2020), pneumatic 
pressure feedback is provided to the user’s head in a Vol-
leyball game in VR, where 250 kPa pressure was applied 
through an air compressor and solenoid valves are used to 
control the actuators. In contrast, Tsai et al. rendered 2.5D 
impact feedback on the head during a boxing game and a 
goalkeeping game in the VR environment (Tsai et al. 2019). 
In their work, they designed impact actuators using a DC 
motor, a servo motor, and a mechanical brake. The actuators 
were placed in three different areas of the head to provide 
the normal directional impact and tangential impact respec-
tively. However, in their work, they rendered fixed force-
based impact feedback, whereas our work provides more 
sophisticated dynamic impact feedback.

2.2  Haptic feedback for safety drills

Various haptic guidance systems are introduced for naviga-
tion, gaming, training, etc. In this paper, we are interested in 
the training/guidance systems used for safety, such as inter-
active VR fire extinguisher (Seo et al. 2019), and assisted 
driving (Girbés et al. 2016; Seo et al. 2019) designed a 
fire extinguisher with haptic feedback in the VR environ-
ment. In their work, kinesthetic feedback is provided using 
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a pneumatic actuator to represent the push-back force and 
vibrotactile feedback is rendered using a voice coil actuator 
to mimic the constant flow of air. Girbés et al. (2016) devel-
oped a system with haptic feedback on the throttle in order 
to assist bus drivers. Similarly, Hosseini et al. (2016) intro-
duced an assistance system that provides haptic feedback 
at the steering wheel to avoid collision between vehicles. 
Though several works have been introduced to provide hap-
tic feedback during safety drills, nevertheless, there is still a 
lack of research to provide impact feedback for earthquake 
safety drills. Existing works for earthquake safety exercises 
only depended on the visual and aural senses (Li et al. 2017; 
Gong et al. 2015; Liang et al. 2018). The addition of hap-
tic feedback with vision and audition could greatly enhance 
earthquake safety drills.

2.3  Impact haptic feedback

Impact feedback is a kind of physical stimulus that emerges 
during a collision with an object. An impact signal repre-
sents a strong impulse response along with a short vibration 
signal. Existing works either considered an impulse signal 
(Park et al. 2019; Poorten and Yokokohji 2006) or Pulse-
Width Modulation (PWM) signal (Handa et al. 2019) for 
impact feedback. On the other hand, several studies also 
attempted to develop actuators for impact rendering. For 
instance, Park et al. (2019) designed a multimodal actuator 
using a voice coil actuator and impact actuator for collision 
effects rendering. In their work, the impact actuator con-
tained three solenoids and a permanent magnet. The impact 
feedback happens when the magnet collides. Poorten and 
Yokokohji (2006) developed a system that rendered the 
impulsive force during the collision in VR. The system is 
composed of three main components, i.e., force generator, 
coupling part, and momentum generator. In contrast, Handa 
et al. (2019) designed a ball-type haptic interface, which 
generates impact vibration using a vibro-transducer and four 
servo motors when the ball hits objects. In Pyo et al. (2015), 
the authors designed a haptic actuator using a permanent 

magnet and a solenoid coil for impact feedback. Similarly, in 
Kim et al. (2018), an impact actuator is designed to render a 
planer two-DOF impact as well as vibrotactile stimuli. Lopes 
et al. (2015) designed a device to render the haptic feedback 
using a solenoid for hitting or being hit in the VR environ-
ment. In contrast, numerous event-based haptic feedback 
were provided in Hwang et al. (2004), Kuchenbecker et al. 
(2006), Okada et al. (2021). Hwang et al. (2004) designed 
a haptic interface for tapping on a virtual wall. Later on, 
a method for generating contact transients has been devel-
oped in Kuchenbecker et al. (2006), and the performance 
is compared by acceleration matching. Recently, in Okada 
et al. (2021), a passive-type haptic interface based on a DC 
motor’s damping brake was employed.

The above-discussed studies provided impact feedback 
with impulse or PWM signal and ignored the variational 
impact feedback rendering except (Park et al. 2019). In Park 
et al. (2019), impact feedback was provided to the user’s 
hand for the collision effect by using a short impulse signal. 
They rendered the ratio between force and mass as impact 
feedback and overlooked the velocity of the object before 
colliding. Furthermore, their approach cannot render the 
true impact feedback, since the true impact signal includes 
a small vibration signal along with the impulse signal.

3  System and rendering hardware

This paper presents a new and innovative system that pro-
vides realistic impact feedback of falling objects during 
an earthquake in a virtual reality environment, which can 
be utilized for earthquake simulation exercises. The over-
all system is briefly illustrated in Fig. 1. An earthquake is 
simulated in a virtual environment (VE) and a virtual human 
model is used to represent the user in the simulation. Vari-
ous objects fall onto the user’s head in the VR environment 
during the earthquake. The collision is detected when virtual 
objects fall onto the simulated user’s head. Our data-driven 
impact feedback module receives the collision information, 

Fig. 1  An overview representing the overall flow of the proposed system
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i.e., impact velocity and falling object from the VE, and esti-
mates actual acceleration profile for the target velocity and 
object. This estimation is based on the deep neural network 
trained using actual acceleration signals.

3.1  Virtual environment modeling

To simulate a virtual earthquake, we build virtual environ-
ments in Unity 2019. The room and objects are represented 
as 3D meshes. For designing a realistic room, we arrange 
furniture and objects commonly available in a room. A 
human model is used to represent the user in the simula-
tion. Furthermore, we also placed four virtual objects, (i.e. 
plastic frame, concrete brick, piece of wood beam and steel 
plate) that fall down onto the user’s head during the earth-
quakes. Other furniture and objects shake during the simu-
lated earthquakes in the VR environment.

We visually simulate an earthquake by shaking the vir-
tual room based on the actual earthquake data. Similar to Li 
et al. (2017), we utilized the 1952 Kern County earthquake 
data of magnitude 7.3, which happened in Los Angeles. The 
shake disseminates from the floor to all the virtual objects 
placed in the room. If any virtual objects fall onto the head 
of the virtual human representing the user, our approach 
detects the collision employing Unity’s physics engine. The 
total duration of the earthquake is set to 60 s. The scenes of 
the virtual environment used in our experiments are dem-
onstrated in Fig. 2a.

3.2  Hardware setup

As a rendering actuator, building a sophisticated actua-
tor for rendering of impact is out of scope of the paper. 
Instead, considering that the final stimulus due to impact is 
fast changing acceleration, we utilized commonly available 
actuators capable of generating rapid acceleration. Three 
options are chosen and compared later. These are Vibro-
transducer (Vp408), Haptuator (MM1C, Tactile Labs), 
and push–pull solenoid (JF-0826B; input range ±12 V). 
Vibro-Transducer has an input range of ±5 V and frequency 
response between 20 and 15,000 Hz. The size of employed 
vibro-transducer is 17.2(H) × 56(W) × 56(D) mm. In con-
trast, haptuator has an input range of ±5 V and frequency 
response between 30 and 800 Hz. The dimensions of haptua-
tor are 23.95(L) × 9.5(W) × 9.5(H) mm. Vibro-Transducer 
and Haptuator both are voice coil actuators. They are mainly 
designed to provide vibrotactile feedback. The push–pull 
solenoid is a short-length linear motor capable of generat-
ing actual collision. The size is 22(H) × 25(W) × 26(L) mm 
along with a plunger diameter of 7.4 mm . For attaching them 
to user’s head, we firmly attached the haptic actuators with a 
safety helmet as shown in Fig. 3. Users wear this helmet in 
order to feel the object falling impact feedback.

While all the three actuators are used for the baseline 
physics-based approach, only the vibro-transducer and the 
haptuator are used for the data-driven impact feedback ren-
dering since the push–pull solenoid is not controllable by 
an arbitrary waveform. Figure 4 illustrates the mechanism 
and processes of actuator controlling. Vibro-transducer and 
haptuator are controlled using a soundcard and amplifier, 
while push–pull solenoid is regulated using Arduino Uno.

4  Data‑driven impact feedback

In general, data-driven rendering algorithm first collects 
physical signals related to the feedback during actual inter-
action, second, builds an input–output mapping database and 
interpolation scheme for missing data, and third, estimates 
proper signal during rendering based on the user’s input and 
the mapping. The core part is step two: proper mapping and 
interpolation, which determine the performance of the algo-
rithm. In literature, numerous methods are proposed, e.g., 
Culbertson et al. (2014), Yim et al. (2016), Abdulali and 
Jeon (2016), Abdulali et al. (2018), Osgouei et al. (2020), 
Shin and Choi (2020) where Radial Basis Functions Net-
work (RBFN), Linear Predictive Coding (LPC), or Neural 

Fig. 2  a The scenes of the virtual environment used in our experi-
ments and b The experimental setup used during the evaluation
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Network (NN) are used for mapping the user’s interaction 
space to the force response.

The situation in our case is a bit different. The output 
impact acceleration signal does not depend on the user’s 
interaction but on the falling object and on the impact veloc-
ity of that object. Thus, for a certain object, the mapping 
should be done between the object’s velocity and the impact 
acceleration profile. However, it is difficult to map an entire 
impact acceleration profile with respect to a single veloc-
ity value. Another concern is that the object velocity is a 
continuous variable, and we only have a limited number of 
impact acceleration profile samples for particular velocities. 
The interpolated acceleration signals for remaining velocity 
values (i.e., for which we did not record the impact accelera-
tion profile) are needed. The above concerns motivated us 
to formulate this problem as a multivariate sequential time 
series prediction problem, where we predict a new impact 
acceleration profile for a given velocity by taking two neigh-
boring impact acceleration responses for lower and higher 
impact velocities from database as inputs. More specifically, 
given a multivariate time series x = {ISvi−1 , ISvi+1} ∈ ℝ

n , 
where ISvi−1 and ISvi+1 are the two neighboring impact accel-
eration profiles (i.e., one with an immediate lower impact 
velocity and one with an immediate higher impact veloc-
ity from database) ( n = 2 ) with length l and our goal is 

to predict the 1D impact acceleration profile y = {ISvi} of 
length l for the given velocity v. To this end, we propose a 
deep Convolutional Bidirectional Long Short-Term Memory 
(ConvBiLSTM) encoder–decoder framework to interpolate 
the impact acceleration profile for a given object velocity. 
Therefore, the input to the model consists of given velocity 
(v), two neighboring impact acceleration profiles ( ISvi−1 and 
ISvi+1 ), while the output is impact acceleration profile ISvi 
corresponding to the given velocity. Finally, the interpolated 
acceleration profile is rendered as impact feedback. This 
section first introduces the data-collection setup, and then 
moves to the deep-learning-based interpolation algorithm 
and rendering procedure.

4.1  Data collection setup

We build a custom data-collection setup where real objects 
are dropped on the helmet with different velocities to capture 
the acceleration signals due to the collision. For accelera-
tion data capturing, a GY-61 accelerometer is attached to 
the inside of a safety helmet. Data are transmitted to the PC 
through a data acquisition card (DAQ NI-USB 6009). Impact 
acceleration data are captured by dropping a real object onto 
the helmet. To control the impact velocity at the moment of 
contact, we changed the initial height of the object. In order 

Fig. 3  Proposed prototype 
for impact feedback render-
ing using different actuators, a 
Vibro-Transducer, b Haptuator, 
and c Push–Pull Solenoid

Fig. 4  Actuators controlling mechanism and process for a haptuator and vibro-transducer and b push–pull solenoid
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to ensure that the object is dropped from exactly same place 
with same orientation, a rack capable of changing height is 
used for the positioning of the object before dropping, while 
the helmet is placed on the floor. Note that in our work, the 
effect of air drag is insignificant due to the following two 
reasons. Firstly, in our situation, the velocity of the object is 
very slow (2–5 m/s) and the effect of air drag can be consid-
ered negligible. Secondly, the four objects we used are quite 
heavy objects (from 35 to 200 g). Thus, the effect of the 
air drag on the velocity reduction is relatively insignificant. 
Therefore, for the sake of simplicity, we assumed that the 
velocities of the different objects are equal.

4.2  Data mapping and interpolation using deep 
ConvBiLSTM encoder–decoder

The collected acceleration profile can be directly used to 
generate impact feedback during rendering if the impact 
velocity of a virtual object is exactly same as the collected 
velocity. However, in most cases, the velocity does not hit 
the same values, and thus we employ the following inter-
polation algorithm to estimate the acceleration profile. The 
aim is to synthesize the acceleration signal for an arbitrary 
impact velocity even that was not trained by the proposed 
model.

In general, the interpolation of time-series high-frequency 
acceleration profiles is done in frequency domain (Abdulali 
et al. 2020), but in this case, exact phase information and fea-
tures of the signal would be lost. This is in particular a critical 
problem in the impulse acceleration case. In opposite to the 
prolonged high-frequency acceleration profile, e.g., scratching 
a rough surface, where perceptually important information is 
mainly embedded in the frequency and amplitude of the sig-
nal, impulse acceleration possesses its perceptually significant 
features in the shape and timing of the signal. Thus, we pro-
posed new signal interpolation scheme using a deep learning 

technique, which keeps phase and actual shape information of 
the acceleration profile.

The Recurrent Neural Network (RNN) and Long-Short 
Term Memory (LSTM)-based deep learning approaches have 
become very popular for mapping sequential information. 
However, their performance deteriorates when the sequence 
length increases. Recently, to enhance the performance, a 
simple LSTM Autoencoder model was proposed in Srivas-
tava et al. (2015), which includes one encoder LSTM and one 
decoder LSTM. Moreover, an LSTM-based stacked autoen-
coder was developed in Sagheer and Kotb (2019) for multivari-
ate time series forecasting. Extending this work, we propose a 
deep Convolutional Bidirectional Long Short-Term Memory 
(ConvBi-LSTM) encoder–decoder model to effectively pre-
dict the impact signal for a given object velocity. Compared 
to simple (Joolekha and Jeon 2022), the ConvBi-LSTM 
employs convolutional kernels in the input-to-state and state-
to-state transitions of the BiLSTM. Therefore, the proposed 
architecture preserves both spatial and temporal information 
more effectively. Figure 5 illustrates architecture of our deep 
ConvBi-LSTM encoder–decoder framework.

The proposed ConvBi-LSTM encoder–decoder is mainly 
composed of encoding and decoding layers. In the encoding 
layer, three ConvBiLSTM layers are employed with 256, 128, 
and 64 filters, respectively, with kernel sizes of 1 × 3 . The 
convolutional operation is responsible for obtaining the spa-
tial information, whereas the BiLSTM captures the temporal 
dynamics. To address the overfitting issue, each ConvBiLSTM 
layer is followed by a dropout layer. The basic update equa-
tions of ConvBiLSTM at time t are as follows:

(1)it = �(Wi ∗ xt + Ri ∗ ht−1 + Ui
◦ct−1 + bi)

(2)ft = �(Wf ∗ xt + Rf ∗ ht−1 + Uf
◦ct−1 + bf )

(3)ct = ft◦ct−1 + it◦tanh(W
c ∗ xt + Rc ∗ ht−1 + bc)

Fig. 5  The architecture of deep ConvBi-LSTM encoder–decoder model
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where it, ft, and ot denotes the input, forget and output gates, 
respectively. ct , � and tanh represents the cell state, logis-
tic function and hyperbolic tangent function, respectively. 
Whereas, Wi,Wf ,Wc, and Wo denotes the input to state fil-
ters and Ri,Rf ,Rc, and Ro represents state to state filters. 
U∗

◦ct−1 indicates Hadamard terms. bi, bf , bc and bo are the 
bias parameters. In the BiLSTM, the forward and backward 
layers are estimated by hf  and hb , respectively and ht repre-
sents the hidden state. The network takes multivariate time-
series sequence x = (ISvi−1 , ISvi+1) as input, therefore, at each 
time step t, the input is xt.

A repeat layer is used to decode the feature maps acquired 
from the encoder layers. This layer repeats the final output 
vector from the encoding layer in a shape that is a constant 
input to each time step of the decoder. The decoding layer 
can then reconstruct the original input sequence. Afterward, 
three BiLSTM layers are employed in the decoding layer 
with 256, 180, and 150 hidden nodes, respectively. In a hier-
archical manner, the output of the first BiLSTM layer is fed 
into the second BiLSTM layer and the output of the second 
BiLSTM layer is fed into the third BiLSTM layer. Therefore, 
the decoder layer can incorporate the output features from 
the encoding layer, which enhances the predictive model 
efficiency by facilitating representation learning on each 
layer. Finally, the model ends with a fully connected layer 
and a regression layer. Since the object velocity is a single 
value, therefore, it is directly fed into the fully connected 
layer. In our work, the root-mean-square error (RMSE) is 
used as the loss function.

As a result, the trained network is capable of predict-
ing a full time-series acceleration profile that is the result 
of weighted interpolation between two given time-series 
acceleration profiles and one target velocity. The features 
and characteristics of the data used for the training of the 
network are stored in the model, and the interpolation tries 
to depict these features to make a proper estimate.

4.3  Data driven modeling and rendering

Overall training and rendering procedures are depicted 
in Algorithm 1. For training the network, we collected 
data using the data collection setup. For each dropping, 
one impulse acceleration profile is captured at 1 kHz. One 
impulse lasts about 200–400 ms, thus 500 ms was selected 

(4)ot = �(Wo ∗ xt + Ro ∗ ht−1 + Uo
◦ct + bo)

(5)hf = of◦tanh(cf )

(6)hb = ob◦tanh(cb)

(7)ht = (hf , hb)

as the length of one signal, yielding 500 data points in a 
acceleration profile. Twelve different velocities are used 
for data collection, and for each velocity, ten drops are 
used.

Once the acceleration data is collected, another part 
essential for the modeling and rendering is the filtering of 
the signal. Here, we employed a high-pass filter at 20 Hz 
to the acceleration signals for eliminating gravity and the 
static acceleration reading. Haptics researchers mostly use 
a single-axis actuator to render the feedback since humans 
cannot easily perceive the direction of vibrations, and using 
this single-axis actuator significantly reduces the system cost 
and complexity (Park and Kuchenbecker 2019). Therefore, 
many approaches were presented in Park and Kuchenbecker 
(2019), to convert the 3D acceleration signals into a 1D 
signal. For simplicity without losing perceptual accuracy, 
we convert the 3D acceleration signals into a 1D signal by 
employing a new approach, namely, max–min extraction 
approach. The proposed max–min extraction approach for 
synthesizing 1D acceleration from the 3-axis acceleration 
signal is presented in Eq. (8). Ax , Ay and Az denotes the 
values of three-axis acceleration signals. The max func-
tion returns the maximum value, whereas the min function 
returns the minimum value among Axi

 , Ayi
 and Azi

 . The main 
advantage of the max–min extraction approach is that it is 
simple and fast. The max–min extraction and filtering is 
applied to all acceleration signals before training and render-
ing. For each velocity sample, the representative acceleration 
profile from the collected ten impact acceleration profiles 
(see Fig. 6a) is predetermined in advance. The selection 
is done manually by carefully inspecting the acceleration 
profile and choosing one that has average characteristics 
among the collected acceleration profiles. This process is 
done only once. Note that, we overlook simple mathemati-
cal operations (e.g., averaging) to intake the original signal 
characteristics. Figure 6b presents different impact profiles 
for piece of wood beam with different velocities.

After collecting and pre-processing the data, the deep net-
work is trained. Single network is trained using the whole 
data. Thus, the trained network now possesses the features 
of the acceleration profiles associated with object and veloc-
ity. During rendering, the Unity simulation engine gives a 
collision event, which comes along with the object ID and 
the impact velocity. Given the target velocity v, our algo-
rithm finds out two neighboring acceleration profiles ISvi−1 
and ISvi+1 , one with an immediate lower impact velocity vi−1 
and one with an immediate higher impact velocity vi+1 from 
the database containing recorded signals.

(8)

ISvi =

{
max(Axi

,Ayi
,Azi

); if Axi
≥ 0 or,Ayi

≥ 0 or,Azi
≥ 0

min(Axi
,Ayi

,Azi
); Otherwise
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Then, the network takes the given velocity v and the two 
neighboring acceleration profiles ISvi−1 and ISvi+1 for the given 
velocity as input and returns an interpolated full acceleration 
profile for the target velocity. Finally, the estimated accel-
eration profile is passed to the actuator controller for the 
rendering.

5  Evaluation

This section presents the experimental evaluation of the 
proposed approach. The evaluation is divided into three 
subsections: numerical evaluation of the proposed network, 

subjective evaluation along with perceptual study and per-
formance of max–min extraction approach.

5.1  Numerical evaluation

In this section, we numerically evaluate the data-driven 
impact feedback algorithm. The data-driven algorithm 
synthesizes acceleration signals for an arbitrary impact 
velocity even that was not trained by the proposed ConvBi-
LSTM encoder–decoder. The present numerical evaluation 
is designed to test how close the synthesized acceleration 
profiles coincide with the ground-truth measured accelera-
tion signals at the target impact velocity, which is not used 
during network training.

Dataset First, for each object, acceleration profiles ISvi 
were captured at twelve different velocities (i.e., v = 2.42, 
2.80, 3.13, 3.43, 3.70, 3.96, 4.20, 4.43, 4.65, 4.85, 5.05, and 
5.24 m/s). Therefore, we have total 12 acceleration profiles 
for twelve different velocities. Then, we trained the model 
for five velocities, v = 2.80, 3.13, 3.43, 4.85, and 5.05 m/s. 
At that time, for each velocity v along with its acceleration 
profile y = {ISvi} (i.e., l is the length of the acceleration pro-
file), we also taken the two neighboring impact acceleration 
profiles ISvi−1 and ISvi+1 as input. For instance, if we need to 
train the model for velocity v = 3.13 m/s, then the proposed 
model takes its impact acceleration profiles ISv3.13 along with 
two neighboring impact acceleration profiles ISv2.80 and ISv3.43 , 
(i.e., one with an immediate lower impact velocity v2.80 and 
one with an immediate higher impact velocity v3.43 ) as input. 
Then, all these inputs were used to train the model. For each 
object, to test the performance of the model, v = 3.96 m/s 
and 4.43 m/s were selected. Therefore, total 20 samples (5 
velocities × 4 objects) were used for training, and 8 samples 
(2 velocities × 4 objects) were used to test the model. Fur-
thermore, each sample has l = 500 data points as mentioned 
in Sect. 4.3.

The evaluation was done for four real objects. It is well 
known that during an earthquake different types of objects 
may fall down, e.g., broken beams, bricks from the wall, 
parts of a ceiling, lighting bulbs, plastic frames of the light, 
fans, and so on. To cover the variety of the object, this study 
utilized four different objects with different materials, i.e., 
a plastic frame, a concrete brick, a wood beam, and a steel 
plate (see Fig. 7). Their parameters are described in Table 1.

Hyperparameters To train the model, ADAM optimiza-
tion approach is applied with batch size of 8, a momentum 
of 0.9 and a learning rate of 0.0001. To prevent overfitting, 
dropout is set to 0.4 in encoding layers and 0.3 in decod-
ing layers, respectively. All of the hyperparameters detailed 
above are determined empirically.

Ablation Study Figure 8 shows the examples of the esti-
mated and collected acceleration profile for the velocity 3.96 
m/s. In most cases, the estimated signals well coincide with 

Fig. 6  a Ten impact profiles for the piece of wood beam object with 
3.96 m∕s velocity and b Different impact profiles for wood with dif-
ferent velocities
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the measured signals. This is a very promising result since in 
signal estimation tasks such an exact-match in time-domain 
for high frequency signal is a quite challenging task.

In order to objectively compare, we calculated the Root 
Mean Square Error (RMSE) as an error metric. Table 2 
reports the RMS error for four objects and two velocity 
values that were selected as the test data. The plastic, 
concrete, and wooden objects showed lower RMS errors, 
while the steel objects showed higher RMS errors. Our 
speculation on this result is that the shape of the steel 
object is a thin plate, while other objects are either cube 
or spherical shape. While falling, thin plate object, i.e., 
the steel object, the trajectory varies from time to time, 
resulting in the slight variations in the impact orientation 

and location in each trial. This uncontrollable factor is 
one of the causes of the higher RMSE in the steel object 
case. In the domain of haptics, an RMS error in the range 
from 0.025 to 0.162 cm∕s2 for the vibrotactile signal was 
regarded as insignificant (Abdulali et al. 2020; Romano 
et al. 2010). Nevertheless, due to differences in the situ-
ation, i.e., vibrotactile due to texture vs. impact, it is still 
unclear how significant this error indeed is in perception. 
The following section examines the effect of the errors 
through a series of subjective and perceptual experiments.

To make sure whether our proposed interpola-
tion scheme is optimum for this task, we also compare 
RMSE from our proposed network (ConvBi-LSTM 
encoder–decoder) with existing state-of-the-art mod-
els, i.e., weighted averaging scheme-based linear 
interpolation(Hassan et al. 2020), Single-layer LSTM, 
Two-layer BiLSTM, LSTM-SAE (Sagheer and Kotb 2019) 
(LSTM autoencoder), Bi-LSTM encoder–decoder and 
ConvLSTM encoder–decoder). Note that the ‘weighted 
averaging scheme’ averages two neighboring impact accel-
eration data based on weight in the time-domain. Both the 
single-layer LSTM and two-layer BiLSTM include 200 
hidden nodes for interpolating the impact signal. Figure 9 
presents the averaged RMSE comparison between differ-
ent models with varying the number of encoder–decoder 
layers. Note that, the averaged RMSE is obtained by taking 
the average of the RMSE values for four objects and two 
testing velocities data. Table 3 reports the averaged RMSE 
comparison with different methods. The results show that 
our model exhibits the lowest RMSE, ensuring the relative 
appropriateness of our model.

Fig. 7  Four objects: Plastic frame, Concrete type broken brick, Wood 
type broken beam, and Steel type ceiling part used for the experi-
ments

Table 1  Parameters for four objects

Objects Mass (g) Dimensions (width × 
height × depth) (mm)

Plastic frame 35 53.4 × 81.9 × 44.7
Concrete brick 69 36.5 × 48.3 × 14.6
Piece of wood beam 150 58.2 × 98.3 × 35.6
Steel plate 200 100 × 100 × 4.8

Fig. 8  Examples acceleration profiles: measured versus estimated 
using our approach for velocity 3.96 m/s

Table 2  Root mean square error for the estimation of the acceleration 
profile

Objects RMSE for velocity 
3.96 m/s

RMSE for 
velocity 4.43 
m/s

Plastic frame 0.033 0.025
Concrete brick 0.027 0.032
Piece of wood beam 0.041 0.040
Steel plate 0.162 0.114

Fig. 9  Averaged RMSE comparison between different models with 
varying the number of encoder–decoder layers
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5.2  Subjective evaluation and perceptual study

A total of two user studies were carried out to assess the 
performance and efficacy of the proposed impact render-
ing method. The first experiment is designed to evaluate the 
overall perceived realism of the feedback in comparison with 
the baseline physics-based approach. The second experiment 
goes further; the exact similarity between the virtual and real 
feedback is examined along with the virtual feedback match-
ing. All the human experiments performed in this work were 
approved by the Institutional Review Board at the authors’ 
institution (KHGIRB-21-321).

5.2.1  User study 1: overall realism

For comparison, we implemented a conventional physics-
based approach for impact rendering. The approach simu-
lates haptic feedback based on physics equations. In litera-
ture, physics-based approaches are quite common in haptic 
rendering, e.g., Xu et al. (2019), Park et al. (2019), Chan 
and Choi (2009), Park and Choi (2017), but no prior work 
exactly fits to our case. Thus, we implement the algorithm 
as follows. In general, when an object falls onto the user’s 
head, the kinetic energy is transformed into vibration gener-
ating impact feedback. Assuming the duration of the energy 
transformation is fixed for a certain object, the amplitude of 
impact is proportionally related to the kinetic energy. This 
is described by

where m is a mass of the falling object, and KEmax is the 
maximum amplitude that a certain actuator can produce. 
When the collision is detected, the velocity and eventually 
the kinetic energy of the object is calculated by the Eq. (9). 

(9)KE =
1

2
× m × v2,

(10)Amplitude =
KE

KEmax

,

(11)f (t) =

{
Amplitude; if 0 < t < b

0; otherwise

The square-wave function as presented in Eq. (10) is used to 
generate the impact feedback, which is then provided using 
the three different kinds of actuators, i.e., vibro-transducer, 
haptuator, and push–pull solenoid.

Participants A total of 15 participants (10 males and 5 
females) took part in this user study. Their mean age was 
29.5 years (ranges from 24 to 35 years). They were informed 
of the experimental procedure beforehand. Four participants 
had a moderate experience of using haptic devices, while the 
others were naive. No participant reported any disabilities 
that would restrict the experimental procedure.

Experimental Conditions In this study, a total of four 
virtual objects were used, with the same parameters as 
described in Table 1. Two rendering algorithms, i.e., phys-
ics-based and data-driven algorithm, are used for the com-
parison. All three helmets were used for the physics-based 
algorithm, while the push–pull solenoid-based helmet was 
not used for the data-driven approach due to the inability 
to control the push–pull actuator with an arbitrary wave-
form profile. Thus, the total number of conditions was 12 
(4 objects × 3 helmets) for the physics approach and 8 for 
the data-driven approach (4 objects × 2 helmets), yielding 
20 conditions. Note that in the data-driven approach, for 
velocity 3.96 m/s and 4.43 m/s, we rendered the estimated 
acceleration profiles rather than rendering the captured 
acceleration profile. These velocities were selected as target 
velocities to test the performance of the model. For the other 
cases, we rendered the captured acceleration profiles.

Procedure The experimental session consisted of train-
ing and main sessions. During the training session, at first, 
a monitor screen displaying the virtual scene is presented to 
the participants, where participants were introduced to the 
virtual objects and falling of these objects onto the head of 
the human model in VR. Then, impact feedback is explained 
to the user for the falling objects on the head. Furthermore, 
the output impact responses for the physics-based and data-
driven approach were also illustrated to the participants. On 
average, the training session lasted for 10–15 min. After-
ward, the participant took a break for 5 min.

In the main session, participants sat in a chair in front 
of a computer monitor while wearing an Oculus Rift and 
one of the helmet as shown in Fig. 2b. In the virtual reality 

Table 3  Averaged RMSE 
comparison between the 
proposed ConvBi-LSTM 
encoder–decoder and existing 
state-of-the-arts

Methods Averaged RMSE

Weighted Averaging Scheme based linear interpolation (Hassan et al. 2020) 0.297
Single-layer LSTM 0.196
Two-layer BiLSTM 0.148
LSTM-based stacked autoencoder (Sagheer and Kotb 2019) 0.098
Bi-LSTM encoder–decoder 0.087
ConvLSTM encoder–decoder 0.074
ConvBi-LSTM encoder–decoder 0.059
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environment, the user could see the objects falling on their 
head. Furthermore, participants wore headphones that 
played earthquake sound. For each participant, the main 
session contained 12 + 8 conditions. For each condition, 7 
velocities were used. As a result, 84 + 56 trials were done 
for each participant. In each trial, impact feedback from four 
virtual objects was rendered to the user’s head, synchronized 
with the graphics and sound. After each condition, the par-
ticipant was asked to rate the overall feedback fidelity by 
answering two questions: (1) how much realistic the feed-
back was? (Realism) and (2) was the feedback unnatural? 
(Unnaturalness). The rating was given in the form of 0–100 
continuous scale. The entire experiment took about 2 h on 
average for a participant.

Results The mean scores for the questionnaires are plot-
ted with standard errors in Fig. 10. After confirming that 
the assumptions of ANOVA were met, we carried three-way 
repeated measures ANOVA on each question applying three 
independent variables, i.e., actuator, object and rendering 
method. Note that the push–pull solenoid actuator result was 
not considered, because it was not used for the data-driven 
approach, and even in the physics-based approach, it is out-
performed by the other actuators. The rendering method had 
a significant effect on all the questions; realism ( p = 0.0001 ) 
and unnaturalness ( p = 0.0002 ). Similarly, object and actua-
tor also had a statistically significant effect on all the ques-
tions; (realism, p = 0.0051 and unnaturalness, p = 0.0015 ) 
and (realism, p = 0.002 and unnaturalness, p = 0.0014 ), 
respectively. For realism questionnaire, the interaction term 
(actuator × object) and (object × rendering method) were not 
statistically significant ( p > 0.05 ). However, the interaction 
term (actuator × rendering method) were statistically signifi-
cant ( p = 0.0137 ). On the other hand, for the unnaturalness 
questionnaire, all the interaction terms were not statistically 
significant ( p > 0.05 ). Later on, Bonferroni-Holm analy-
sis was utilized for pair-wise post hoc tests. For both the 
questionnaires, Bonferroni-Holm analysis demonstrates that 
except (actuator × rendering method), all the pairs scores 
were not significantly different. For the realism question-
naire, participants preferred the vibro-transducer based hel-
met with the data-driven approach. In contrast, the physics-
based approach along with the push–pull solenoid was rated 
lower. For both rendering methods, the participants rated 
the wooden object as the best. Besides, actuators along with 
the rendering approaches were also inspected in the form of 
box plots in Fig. 11a, b with regard to realism and unnatural-
ness, respectively. For both the rendering methods as well 
as for the questionnaires, vibro-transducer shows superior 
performance.

Discussion While both approaches are positively scored 
(for the realism questionnaire, and both actuators, the 
median is 70 for the physics and 85 for the data-driven 
approach), the proposed data-driven rendering system 

received significantly better ratings for both actuators. The 
physics-based system, being driven by parametric equations, 
offers a simple and fast algorithm for rendering the impact of 
falling objects with easier implementation and less computa-
tion power. On the other hand, it is clear that the data-driven 
system provides richer haptic feedback.

5.2.2  User study 2: perceptual study

Two experiments are conducted in this user study; one is 
virtual feedback matching and the other one is the similar-
ity of the haptic feedback itself. One of the straightforward 
ways of assessing the haptic accuracy of virtual feedback is 
to directly compare the virtual feedback with corresponding 
real feedback. This is performed in both these experiments.

Participants A subset of 10 participants from the previous 
experiment took part in this experiment. To avoid learning 
effects, a 6-week washout period (Bortone et al. 2020) was 

Fig. 10  Mean scores for the a realism and b unnaturalness. The error 
bars show the standard deviation. The * shows statistically significant 
difference with p < 0.05 . Note that, a, b legends are same
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included between the two user studies, providing a signifi-
cant time delay between participants involvement.

Experimental Design This experiment is divided into two 
parts: feedback matching experiment and similarity rating 
experiment. For each participant, the virtual impact feed-
back matching study was conducted first, followed by the 
similarity evaluation study. In the feedback matching study, 
participants were presented one virtual stimulus and asked 
to find the best-matching real stimulus as well as to find the 
best-matching virtual stimulus under a given real one. If a 
participant properly matches the virtual and real feedback, 
then it is counted as 1, otherwise 0. For the similarity rating 
study, they were asked to rate the similarity between vir-
tual stimuli and corresponding real stimuli. In both studies, 
physics-based and data-driven algorithms were used for the 
virtual feedback, while only the vibro-transducer was used 
as the actuator, since it showed the best performance in user 
study 1. Velocities used in these experiments were 3.70 and 
3.96 m∕s.

While our rendering system created virtual stimuli, real 
stimuli were presented by the setup shown in Fig. 12. The 
object was carefully placed directly above the head with the 

set height (based on the velocity) and dropped. The object 
fell and hit the helmet, generating feedback. The object may 
bounce after hitting the helmet, which may cause injury to 
the participant. In order to prevent injury, safety guards are 
attached to the outside of the helmet, as shown in Fig. 12. 
The safety guards are two sponge foam plates covering the 
outside of the helmet to prevent the bounced object from hit-
ting the participant’s other body parts. The sponge guards do 
not affect the feedback delivered to the participant.

The feedback matching experiment consisted of three 
steps. First, a participant was presented with one virtual 
feedback (target) and then asked to find best-matching 
real feedback among the four real stimuli (comparisons). 
The second step is the other way around, finding the best-
matching virtual one among the four virtual ones (compari-
sons) under a given one real stimulus. The last step was the 
matching between real and real pairs, acting as a reference. 
The participant was presented one target real stimulus and 
instructed to find one best-matching stimulus among the four 
real stimuli. This last step is included for testing how similar 
the discriminability of the virtual feedback is compared to 
that of real feedback.

For the similarity evaluation, there were total ten stim-
uli pairs (conditions). The first four are real–virtual pairs; 
for each real object, corresponding virtual feedback was 
paired, yielding four pairs, i.e., VP–RP, VC–RC, VW–RW, 
and VS–RS. These were repeated for both rendering meth-
ods. The next four pairs are for real–real comparisons. For 
each object, real stimuli are presented twice, yielding four 
real–real comparison, i.e., RP–RP, RC–RC, RW–RW, and 
RS–RS. These conditions act as the upper reference for the 
similarity ratings. Note that, even though exactly the same 
two physical stimuli are presented to a human, a similarity 
score does not usually reach 100 due to error in the human 
perception system. Thus, measuring the upper bound can 

Fig. 11  Comparison of different actuators in the form of box plots. 
Asterisks shows statistically significant difference with p < 0.05

Fig. 12  Perceptual experiment. The participant compares the virtually 
rendered impact feedback and feedback from real objects falling. A 
safe guard was attached to the outside part of the helmet for safety 
reasons
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be helpful for the interpretation of the result. The last two 
pairs are for the lower bound; completely different two real 
objects, RP–RS, as well as two virtual feedback, VP–VS, 
were used for the comparison, yielding a lower reference 
score.

Procedure Before the beginning of this experiment, 
written and verbal instructions were provided to the users 
describing the procedure. It was made sure that users per-
fectly learned the process by asking them to repeat what they 
had understood.

The experimental session is divided into training and test-
ing sessions. During the training session, participants were 
introduced to the environment, the objects, their feedback, 
and their tasks. The participant was informed that, in this 
experiment, he/she will feel both real and virtual impact 
feedback of the falling object’s on the head through different 
methods. Afterward, the real objects feedback were given to 
the participant. On average, the training session lasted for 
15 min. Then, the participant took a break for 5 min.

In the main session, a participant sat in a chair. Auditory 
and visual stimuli were blocked by headphones with white 
noise and blindfolds, respectively. He/she first conducted the 
feedback matching experiment. As mentioned, the partici-
pant was first given one of the virtual feedback and asked 
to find the best-matching real feedback among the four real 
stimuli given during the training session. This process is 
repeated for the four virtual feedback, and this ends step one. 
During the matching trials, he/she was allowed to feel the 
comparison stimuli again and again if wanted. In step two, 
one real feedback was presented and asked to find the best-
matching virtual feedback among the four virtual stimuli 
given in step one. This process is also repeated for the four 
real feedback. Finally, four real–real pairs feedback match-
ing were done. The presenting order of the feedback was 
randomized.

In the similarity rating experiment, for each participant 
ten pairs (conditions) are presented. For each condition, 2 
impact velocities are used in 2 repetitions, yielding 4 rep-
etitions. The presenting order of the conditions were ran-
domized, and within a condition, the order of each stimu-
lus in a pair was randomized. In each trial, the participant 
was asked to rate the overall haptic similarity on a zero to 
100 scale between two stimuli. Zero represents that the two 
feedback felt completely different, while 100 means the two 
stimuli were perceptually identical. The entire user study 
took about 60 min on average for a participant.

Results The experimental results for the feedback match-
ing are presented in the form of confusion matrices in 
Fig. 13. The recognition rates were 32.5% with the physics-
based approach and 45% with the data-driven approach for 
real–virtual matching. For virtual-real matching, the recog-
nition rates were 35% and 47.5% with the physics-based and 
data-driven approaches, respectively. The recognition rate of 

real–real matching was 70% with 12 mismatches out of 40. 
It is observed that the participants often become confused 
between the concrete and steel object feedback. Figure 14a, 
b shows the overall trend of the recognition rate for different 
conditions.

The experimental result for similarity evaluation is dem-
onstrated in Fig. 15. The averaged similarity scores for the 
four real–real comparisons are used as the upper reference, 
whereas the average score across the three lower reference 
conditions is used for the lower bound. After confirming that 
the assumptions of ANOVA were met, we carried out a two-
way repeated-measures ANOVA with object and rendering 
method as the two independent factors for the similarity rat-
ing experiment. The outcomes revealed that the similarity 
score was significantly different across objects ( p = 0.0027 ) 
and between two rendering approaches ( p = 0.0016 ). How-
ever, their interaction term was not statistically significant 
( p = 0.6725 ). Later on, for pair-wise posthoc tests, the 
Bonferroni-Holm analysis was employed. This post hoc 
test shows that all the pairs scores were not significantly 
different ( p > 0.05 ). Note that, real feedback ratings were 
not included in the two-way ANOVA since they are used to 
produce the upper and lower reference lines. On average, the 
highest-rated pair of real–virtual objects was VW–RW, hav-
ing a score of 69.5% for the data-driven approach, whereas 
the lowest was 44.5% for VC–RC during the physics-based 

Fig. 13  a, b Confusion matrices of virtual impact feedback matching 
by two rendering methods. c Confusion matrices of real object feed-
back matching
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approach. The scores of real–virtual pairs remained con-
sistent, ranging from 44.5% to 58% for the physics-based 
approach and 56% to 69.5% for the data-driven approach. On 
average, the similarity of the feedback from the data-driven 
approach reaches 61.125%, whereas 52% for the physics-
based approach.

Discussion In the feedback matching experiment, it 
is observed that the overall recognition rate of the virtual 
matching conditions is inferior to that of the real matching 
condition. This trend is stronger in physics-based method. 
However, in the data-driven method, the recognition rates of 
virtual matching conditions are quite comparable to those of 
real matching conditions (see Fig. 14b). This indicates that 
at least for the data-driven method, perceptual features used 
in discriminating different kinds of impact are captured well 
in virtual feedback with reasonable quality. This is further 

supported by the fact that the trend of the virtual matching 
recognition rate of the four different objects exactly follows 
that of real feedback matching, as presented in Fig. 14a, b. 
For instance, we could observe that the discriminability of 
plastic and wood type objects is higher than the concrete and 
steel type objects for both virtual feedback and real feed-
back. From the confusion matrices (see Fig. 13a, b) it is 
evident that, there was a mix-up between concrete and steel 
feedback, which contributed substantially to reduce the rec-
ognition rates for both virtual and real feedback matching.

In the similarity evaluation study, participants rated the 
virtual-real pairs positively, although the scores were still 
below the upper reference line. Among all the virtual feed-
back, concrete type object has the worst similarity ratings. 
To investigate further, participants were encouraged to com-
ment on their ratings, particularly why they gave lower or 
higher ratings on some trials. Most of the participants who 
gave higher ratings mentioned that they did not perceive any 
unexpected haptic artifacts, noise, or instability. Addition-
ally, they also mentioned that they were able to discriminate 
between the virtual feedback for different objects and their 
respective velocities. In contrast, several participants stated 
that when the real object falls on helmets, rather than obtain-
ing feedback on one single contact point, they got feedback 
on a wide range of the helmet, which also made them feel 
uncomfortable. This effect was due to unconstrained inter-
actions or collisions, whereas the impact feedback for the 
virtual object was rendered at a particular point.

From all the experimental results, it is observed that the 
data-driven approach provides higher realism than the phys-
ics-based approach. In particular, the data-driven approach 
demonstrates a very close recognition rate for plastic and 
wood type object matching compared to the real feedback 
matching study (see Fig. 14b). Similarly, the overall similar-
ity scores of the data-driven approach were also relatively 
higher than the physics-based approach. This can be due to 

Fig. 14  Recognition rate comparison between real and virtual feedback matching with a Physics based b Data-driven approach

Fig. 15  Average scores from the similarity evaluation. The error bars 
show the standard deviation. Note that, V represents virtual, R repre-
sents real, P denotes plastic, C represents concrete, W denotes wood, 
and S represents steel
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the following reason. The data-driven approach renders a 
residual vibration signal just after the strong impulse, while 
the physics-based stimulus only contains the impulse at the 
moment of contact. We speculate from this that the residual 
vibration plays quite an important role in increasing the real-
ism of impact rendering. This needs further investigation.

5.3  Performance of max–min extraction approach

This experiment is designed to examine the performance 
of the new max–min extraction approach (see Sect. 4.3), 
which reduces the dimensionality of 3D acceleration data, 
is compared with the state-of-the-art DFT321 approach. The 
DFT321 approach introduced in Park and Kuchenbecker 
(2019) takes 3-axis acceleration signals as input and syn-
thesizes 1D impact signals â(t) that has the same spectral 
energy as the original signals. The process is accomplished 
by employing the below equations,

where Ãx(s) , Ãy(s) , and Ãz(s) are the three-axis accelera-
tion vector components, |Ã(s)| denotes the frequency-domain 
magnitude of DFT321 signal. Phase angles are represented 
by �(s) , which is determined by calculating the inverse 
tangent of the sum of the imaginary parts divided by the 
sum of the real parts of the original signals. Inverse Fou-
rier transform function is represented by F̂  . In Park and 
Kuchenbecker (2019), several approaches have been pro-
posed for reducing 3D vibrations to 1D vibrations, and the 
DFT321 showed the best performance. Therefore, the pre-
sent experiment uses the DFT321 approach as a benchmark 
for comparison.

Objective Evaluation Following the existing approaches 
(Landin et al. 2010; Park and Kuchenbecker 2019), we eval-
uate the numerical performance of DFT321 and Max–min 
extraction approach by employing the spectral match and 

(12)â(t) = F̂|Ã(s)|exp−j𝜃(s))

(13)|Ã(s)| =
√

|Ãx(s)|2 + |Ãy(s)|2 + |Ãz(s)|2

(14)𝜃(s) = tan−1

(
Im(Ãx(s) + Ãy(s) + Ãz(s))

Re(Ãx(s) + Ãy(s) + Ãz(s))

)

temporal match metrics. The spectral and temporal match 
metrics indicate the similarity between the collected 3D 
acceleration signals and the reduced 1D impact acceleration 
profile, which are explicitly defined in Landin et al. (2010); 
Park and Kuchenbecker (2019). Table 4 presents the object-
wise comparison result between the DFT321 and max–min 
extraction approach. From this experiment, we can observe 
that in most cases max–min extraction approach performs 
best and preserves the original information in the signal.

Subjective Experimental Design This experiment had 
the same participants, experimental conditions, and proce-
dure as the user study 1 with the data-driven method. The 
participants were provided with impact feedback using the 
proposed max–min extraction approach and DFT321 based 
approach. The feedback was rendered for four different vir-
tual objects, listed in Table 1. Each participant carried out a 
total of 56 trials (4 objects × 7 different velocities × 2 actua-
tors) for each approach. Afterward, they rated the feedback 
in terms of realism questionnaire. The rating was given in 
the form of 0–100 continuous scale.

Results Figure 16a shows the comparison results between 
the max–min extraction and DFT321 approach. Overall, the 
max–min extraction approach with vibro-transducer outper-
forms the other settings. Furthermore, the vibro-transducer 
with the max–min extraction approach had a statistically 
significant ( p < 0.01 ) effect over the haptuator with both 
approaches. Moreover, we also compare the efficiency. Fig-
ure 16b shows the processing time for both the approaches. 
The processing time was measured during the conversion 
of each 3D acceleration signals to a 1D impact signal. The 
median processing time for the DFT321 approach was 
approximately thrice than the max–min extraction approach, 
showing that the max–min extraction approach is even faster.

6  Conclusion

The main aim of the proposed system is to render realistic 
impact feedback of falling objects during an earthquake in a 
virtual reality environment that can be used for safety-train-
ing simulation exercises. In this regard, we proposed a deep 
encoder–decoder based data-driven approach for realistic 
impact feedback rendering as well as the max–min extrac-
tion method for converting the captured 3D acceleration data 

Table 4  Object-wise spectral 
match and temporal match 
comparison

Objects DFT321 Max–min extraction

Spectral match Temporal match Spectral match Temporal match

Plastic frame 0.97 0.80 0.97 0.78
Concrete brick 0.90 0.64 0.93 0.72
Piece of wood beam 0.93 0.84 0.97 0.88
Steel plate 0.88 0.72 0.90 0.80
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into a 1D acceleration profile. The performance of the pro-
posed approach was tested with the help of subjective evalu-
ation and perceptual study. The results showed that the data-
driven-based rendering outperformed baseline physics-based 
rendering, while participants preferred the vibro-transducer 
among the actuators. The proposed system still has room for 
further improvements. Currently, the system provides impact 
feedback on a single point (area); a design can be made to 
provide feedback on multiple locations of the body with 
multiple actuators. Additionally, in the future, for sports and 
workforce training, we will analyze rotational acceleration 
as well as linear acceleration in the form of impact feedback. 
To the best of our knowledge, our proposed framework could 
easily be extended to other impact feedback simulations, 
which may include impact of sports-related actions (e.g., 
kicking a football, hitting a ball with a bat), impact feedback 
during surgical training, the sensation of road bumps, and 
tapping on surfaces.
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