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Abstract

The main focus of this research was to build a universal haptic texture mod-

els library and to design an automatic haptic model assignment algorithm

which is used to assign haptic models to any given texture surface based on

image features. Evidence of a relation between perceptual haptic texture

and image features is provided and this relationship is used in the automatic

assignment of haptic texture models. Haptic texture perceptual space and

image feature space are established and the correlation between the spaces

was found. The correlation from these two spaces was used to train a multi-

class support vector machine with a radial basis function kernel resulting

in a universal haptic texture library comprising of 84 real life texture sur-

faces. The perceptual space was classified into perceptually similar clusters

using K-means. Haptic texture models were assigned to new surfaces in

a two step process; classification into a perceptually similar group using

the trained multi-class support vector machine, and finding a unique match

from within the group using binarized statistical image features. The sys-

tem was evaluated using 21 new real life texture surfaces and an accuracy

of 71.4% was achieved in assigning haptic models to these surfaces.
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Chapter 1

Introduction

1.1 Haptic Texture Modeling

In recent decades the field of virtual reality (VR) has improved by leaps

and bounds. It has found applications across a multitude of research and

commercial areas [1–9]. In a VR system, the actions and behavior of a

user are closely monitored and the environment is altered accordingly. The

response of the virtual environment to a user’s actions is in the form of

a feedback. This feedback can be visual, auditory, or any other modality.

The aim of such virtual reality environments is to keep the user interacted

and indulged in the created environment, ideally to such an extent that

the user cannot distinguish the virtual environment from a real one. This

interactiveness, in more technical terms, is called as the immersiveness or

realism of the virtual reality system or environment. Until recent times,

VR systems used to incorporate most of the sensory modalities with the

exception of the haptic modality. But recent VR systems, with the addition

of haptic content, has a vastly improved immersiveness and realism [10–13].

However, the provision of haptic feedback is not as straightforward as other

modalities nor it is as developed as others.

One of the most stringent bottlenecks in haptics technology for VR sys-

tems is the difficulty in providing haptic models. The provision of haptic

feedback for VR environments basically requires two things; a geometric

1



1.2 PERCEPTUAL DIFFERENCES BETWEEN BARE HANDED AND TOOL

BASED INTERACTION 2

model of the environment, and the haptic property models which are as-

sociated with the geometry of the environment [14]. The provision of a

geometric model for the environment is a relatively easy task since a single

model is usually shared, and various computer graphics tools and algorithms

are readily available for creating a geometric model. However, haptic prop-

erty models e.g., friction, stiffness, surface texture, etc. are much harder to

obtain. Mostly there are two methods for obtaining haptic property mod-

els. The first one is concerned with the manual tuning of parametric models

[15–17]. While the other method, as carried out in [18–20] ,involves training

of non-parametric interpolation methods. In order to provide a virtual hap-

tic feedback for a given object, a object needs to be interacted with using a

sophisticated sensing hardware or should be felt by the designers to judge

its properties for manual tuning of parameters.

Another hindrance in the haptic modeling process is the association

of appropriate haptic properties with the corresponding geometric model.

Currently, this association is mostly carried out manually in the code for

rendering haptic feedback. However, initial efforts have been made for pro-

viding a tool for handling haptic properites intuitively [21,22].

1.2 Perceptual Differences Between Bare Handed

and Tool Based Interaction

It is not uncommon in our everyday life to find situations where the use

of a finger or hand for interaction is not possible. For example, when we

encounter a seemingly hot surface or if we have to write on a piece of pa-

per. In such situations, the human finger or hand is substituted by a tool.

Although, we are not in direct contact with the desired surface, we receive

a rich haptic feedback through the tool [23].
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Various studies have focused on the haptic perceptions of textures using

either bare hand [24–26] or a tool [27–29]. A limited number of studies have

taken up these two modes of interaction for comparison [30,31].

Furthermore, most of the haptic rendering environments are tool based,

while in our daily life we usually use our bare hands for interaction. Thus,

it is of utmost importance to find out the underlying perceptual differences

in the two modes of interaction. Such a study will help in improving the

realism of haptic rendering environments by covering the gap between bare

handed and tool based perception and as a result these environments can

be molded towards providing a perceptually more realistic feedback.

1.3 Research Goal

The main aim behind this study is to provide a ‘Universal Haptic Texture

Models Library’ where different haptic models, describing the haptic prop-

erties of a wide range of haptic surfaces, are stored. Additionally, our aim

is to develop a system that uses the library to automatically assign hap-

tic property models to the environment with minimum overload. Such a

system would radically decrease the time and efforts required for extensive

modeling of the haptic environment.

In an effort to achieve these goals, the current study provides an initial

attempt towards image texture based automatic assignment of haptic mod-

els. It is a well known fact that image texture bears correlation with haptic

texture, as shown in [32–34]. Furthermore, haptic texture of surface can

be judged from the micro geometry of the surface, and this micro geometry

of the surface can be readily captured in an image. Thus, in the current

study, the perception aspects of images are used in automatic assignment of

haptic texture models. The overall procedure of achieving these goals can
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be defined in four major steps.

1 - Capture the haptic texture properties of real life surfaces, where the

surfaces should cover a wide range of daily life haptic interactions.

This can be achieved by conducting a user study to establish a per-

ceptual space where the given surfaces are represented based on their

perceptual haptic texture characteristics.

2 - Acquisition of a wide range of visual texture characteristics from the

all the texture surfaces by extracting multiple image features.

3 - Determining a relationship between the haptic texture properties (per-

ceptual space), i.e., step 1, and the visual texture properties (image

features), i.e., step 2. As a result, establishing a library where the

haptic texture models are stored along with the associated image fea-

tures.

4 - Automatic assignment of haptic texture models to newly encountered

- outside library - texture surfaces based on their image features using

the library established in step 3.

1.4 Contributions

The main contributions of the current study are listed below:

� In the current study we used 84 real life texture surfaces for estab-

lishing the perceptual space and extraction of image features. All the

surfaces were collected from daily life objects and the use of artificial

or trivial surfaces was avoided. The use of such a dynamic range of

texture surfaces is very rare in the field of haptics and perception.
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� A relationship between haptic texture properties and image features

was established.

� A universal haptic texture models library was established where haptic

models were stored along with the corresponding image features.

� An automatic haptic models assignment algorithm was developed for

assigning haptic models to arbitrary real life texture surfaces based

on their image features.

� Differences between tool based and bare handed interaction were eval-

uated in the perceptual space using multidimensional analysis.

1.5 Organization

Various related works and the techniques used in this study are detailed

in Chapter 2. The texture surfaces dataset used in the current research is

described in Chapter 3. The building of a perceptual space from the haptic

properties of the texture surfaces is explained in Chapter 4. In Chapter 5,

the image feature extraction process is highlighted along with the image

feature selection process. The automatic assignment of haptic texture mod-

els to various surfaces as well as the establishment of the universal haptic

library is presented in Chapter 6. The evaluation process for checking the

accuracy of the proposed algorithm is provided in Chapter 7. The effect

of using a bare hand as compared to a tool for interaction is explained in

Chapter 8. A brief conclusion and possible future works are discussed in

Chapter 10.



Chapter 2

Related Works

One of the first attempt of making haptic models library was made in [35]

where they established 100 different texture models for haptic rendering.

Although this library might cover a large range of haptic interaction, but

its has some fundamental drawbacks. First, there is no way to automatically

assign a haptic model to new surfaces. In order to include a new texture

model, the whole modeling process using data-driven haptic modeling has

to be repeated. Second, selecting a perceptually similar model, from within

the library, for a surface can be a cumbersome task as one has to manually

search through the library for a close match. In order to overcome these

drawbacks, the approach followed in the current study is to automate model

assignment process. For this purpose a relationship between the visual and

haptic characteristics of texture surfaces is established.

This chapter will describe the efforts made by researchers in building

haptic texture perceptual spaces. The methods used for conducting the

experiments for building perceptual spaces will also be touched upon. Af-

terwards, the various previous attempts at using visual information for iden-

tifying or classifying surface textures will be highlighted.

6



2.1 ESTABLISHING HAPTIC TEXTURE PERCEPTUAL SPACE 7

2.1 Establishing Haptic Texture Perceptual Space

Discovering the perceptual properties of textures surfaces has been the fo-

cus of various studies, mainly, neurophysiological and psychophysical. The

researches related to perception of haptic properties have been summarized

in various review papers [36–38]. A more recent study provides a taxonomy

and detailed study of the haptic perceptual properties [26]. This study sug-

gested that there are mainly five dimensions associated with perception of

texture: hard, warm, friction, micro-roughness, and macro-roughness.

The number of dimensions in a perceptual space are highly dependent

on the number and variety of texture surfaces used in the study. For exam-

ple, [39] used only one kind of material, i.e., 40 fabrics. In [40], the authors

again used 26 fabrics. Similarly, in [41] Lyne et al. used 8 tissues and paper

towels. Although, these were very confined studies with a controlled group

of textures, but could only discover two dimensions due to the limited range

of the stimuli.

Hollins et al. in [42] used 17 different kinds of materials, Ballesteros et

al. in [43] used 20 materials of varying nature , in [30] the authors used

16 materials. Due to the variety of surfaces used in these studies, three

different dimensions were unearthed.

While, a unique study where the authors used 124 materials ranging

from every aspect of haptic interaction, could find four dimensions in their

perceptual space [44].

The psychophysical experiments conducted for building the perceptual

spaces can be categorized into three basic categories [26]. The semantic dif-

ferential(SD) [45] method where participants judge the textures on a scale of

adjectives. On both ends of the scale are adjectives with opposite meaning.

All the surfaces are evaluated separately. The advantage of such methods
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is the use of adjectives, which can portray more meaning than mere num-

bers. But if a particular adjective is missing from the scale, the perceptual

property associated with that adjective can also remain unextracted. This

method is used in [46,47].

The second type of method is the Estimation Method where human sub-

jects are asked to rate the similarity between two given surfaces. However,

since a participant has to rate every surface against every other surface

in the study, the number of total comparisons increase exponentially with

increase in the number of surfaces.

The third method is the clustering or classification method where partic-

ipants are asked to classify perceptually similar surfaces into groups [42,43].

This method is significantly fast as compared to other methods and there-

fore allows the use of a large number of surfaces to be compared. However,

this method assumes that the surfaces within one group have no perceptual

dissimilarity. However, recently in [48] the authors have shown that a clus-

ter sorting experiment can successfully are reasonably accurately capture

the minor dissimilarity details across surfaces.

Statistical methods are used to visualize the data from the perception

analysis of different textures. The most famous and common statistical

method is the Multi Dimensional Scaling (MDS) analysis. An introduction

to MDS is provided in [49]. The perceptual spaces established as a result of

MDS shows different texture surfaces as points in an n-dimensional space,

where the distances among these points are representatives of the actual

perceptual differences between them [50].
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2.2 Texture Recognition Using Image Features

Surface texture refers to the micro geometry present on the surface of an

object. The characteristics of this micro geometry shape the overall texture

perception of the image. The micro geometry of a surface can be captured

by an image. Therefore, when image features are calculated from the said

image, they an reveal important characteristics of the surface texture. Image

features have been widely used for classifying surfaces textures in the field

of computer vision and image processing.

Haralick et al. [51–53] used Gray Level Co-occurrence Matrix (GLCM)

for image texture extraction. They calculated various image features from

the GLCM matrix and these features were used for classification purposes. A

number of studies have shown that the GLCM features have high correlation

with the texture perception ability of humans [52,54,55].

Amadasun et al. in [56] provided Neighborhood Gray Tone Difference

Matrix (NGTDM), where the value of each pixel was the difference between

that particular pixel and its surrounding pixels. It was reported that the

features calculated from the NGTDM matrix are highly correlated with the

human perception of surface texture.

The Gray-Level Run-Length Matrix (GLRLM) and the Gray-Level Size

Zone Matrix (GLSZN) are statistical texture characterization methods [57–

60]. The GLRLM counts the pixels with the same intensity in a given

direction. The features calculated from this matrix are helpful in capturing

the low level high frequency changes. On the other hand, GLSZM looks

for pixels of same intensity in a given area. Since, image texture can also

consist of relatively larger areas of the same intensity. GLSZN successfully

captures this characteristic of a textured surface.

Elkharraz et al. in [61] used gradient and percentile statistics along



2.2 TEXTURE RECOGNITION USING IMAGE FEATURES 10

with other features for texture classification and later on texture genera-

tion. In [62], the authors introduced a local descriptor for capturing texture

information. They made use of filters learnt from natural images which

helped in efficient modeling. BSIF histograms were used for texture recog-

nition.



Chapter 3

84 Real Life Texture Surfaces

In order to build a comprehensive universal texture library, the textured

surfaces used in the process must cover the whole range of daily life haptic

interactions. The process of selecting the surfaces for the library must be

thorough and well thought out. It is a well known fact in psychophysics

that the larger and more versatile the dataset, the better the results. Since

the aim of building the universal library is to provide image feature based

automatic haptic model assignment to arbitrary surfaces, it is of utmost

importance that the library contains most of the haptic models that one

could possibly encounter.

One of the contributions of this research is the use of a large number

of real life textured surfaces. A total of 84 different textured surfaces were

used in this study. When compared to previous researches, our dataset of

84 surfaces happens to be many folds larger. For example, in [25,42] Hollins

et al. used 17 surfaces in both cases, in [63] Picard et al. used 24 car seats.

Similarly, Yoshioka et al. in [30] used only 16 materials. While in [64] the

authors used ten papers as a dataset. However, in [44] the authors used

124 different surfaces. This is the only study known to the authors where a

large number of surfaces have been used in a psychophysical experiment.

11
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3.1 Texture Surfaces

A total of 84 real life texture surfaces were used in this study. A conscious

effort was made to include most of the materials that are encountered in

daily life interactions. Additionally, same materials having different kinds

of textures were also used.

All the texture surfaces were cut into equal sizes of 100× 100 and glued

to acrylic plates of size 100 × 100 × 5 mm. The 84 real life surface textures

can be seen in Figure 3.1 The broad categories of the materials used in this

research are shown in Table 3.1. While, the details of all these surfaces are

given in Table 3.2 and 3.3.

Table 3.1: Different kinds of materials from which the texture surfaces are made.

S. No Material of Surfaces

1 Sponge

2 Thread

3 Wood and Cardboard

4 Paper

5 Sand paper

6 Rubber

7 Cloth

8 Metal

9 Plastic
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Table 3.2: Details of the texture surfaces used in this study.

S. No Surface Name S. No Surface Name

S1 Textured rubber 1 S43 Glossy paper 1

S2 Bumpy paper S44 Glossy paper 2

S3 Textured rubber 2 S45 Wooden board

S4 Carpet 1 S46 Lined cloth 2

S5 Carpet 2 S47 Bubbly plastic 2

S6 Cotton towel S48 Rough paper

S7 Artificial grass S49 Smooth fabric

S8 Talc paper S50 Hard board 1

S9 Plain cloth S51 Lined wood 4

S10 Textured cloth 1 S52 Smooth wood

S11 Acrylic S53 Smooth paper 2

S12 Wood S54 Rough cloth

S13 Glitter paper S55 Hard board 2

S14 Balloon S56 Hard board 3

S15 Lined wood 1 557 Textured cloth 7

S16 Lined wood 2 S58 Smooth paper 3

S17 Textured cloth 2 S59 Coffee filter

S18 Bubbly plastic 1 S60 Plastic mesh

S19 Lined rubber S61 Rough sand paper 1

S20 Rough cloth S62 Smooth sand paper 1

S21 Slippery paper S63 Smooth sand paper 2

S22 Carpet 3 S64 Soft hardboard
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Table 3.3: Details of the texture surfaces used in this study.

S. No Surface Name S. No Surface Name

S23 Aluminum foil S65 Smooth sand paper 3

S24 Lined cloth 1 S66 Rough sand paper 2

S25 Smooth paper 1 S67 Aluminum slab

S26 Sponge 1 S68 Lined cloth 3

S27 Lined wood 3 S69 Smooth sand paper 4

S28 Textured cloth 3 S70 Textured fabric

S29 Cotton fabric S71 Rough sand paper 3

S30 Cloth hard cover S72 Bumpy rubber

S31 Textured shoe padding S73 Kite paper

S32 Thick rubber S74 Smooth shoe padding

S33 Textured rubber 2 S75 Lined wood 5

S34 Hard board S76 Bumpy hard plastic

S35 Tissue S77 Textured cloth 8

S36 Textured cloth 4 S78 Hairy cloth

S37 Towel S79 Lined shoe padding

S38 Thread mesh 1 S80 Bumpy glove

S39 Textured cloth 5 S81 Steel mesh

S40 Smooth rubber S82 Model roof tile

S41 Sponge 2 S83 Thread mesh 2

S42 Textured cloth 6 S84 Jeans
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Figure 3.1: Real life texture surfaces used in this study.



3.2 CHAPTER SUMMARY 16

3.2 Chapter Summary

In this chapter we discussed about the texture surfaces being used in this

study. An effort was made to represent all type of haptic interactions, which

occur in a normal day, in the surface textures that were being used here. A

variety of materials including but not limited to paper, steel, cloth, metal,

plastic, etc. were. These materials had different textures and perceptions as

well. Thus, it is safe to say that most of the texture surfaces that a human

encounters in everyday life are represented here.



Chapter 4

Perceptual Haptic Texture Space

In our daily life we can easily differentiate between different surfaces just by

looking at them. For example, we are able differentiate a stone from a wood,

or plastic from metal. Sometimes we can even differentiate between same

materials having different textures. Nevertheless, the sense of vision is not

absolute in differentiating between different textures. For example, when

the difference between textures is relatively less, differentiation using mere

vision becomes difficult. On the other hand, two visually similar looking

surfaces can have completely different texture. Additionally, we cannot

visually distinguish between hot and cold, and hard and soft surfaces most

of the times. In order to counter such scenarios, we are forced to use our

sense of touch. The sense of touch provides us the true nature of the surface

textures. Different texture properties e.g. stiffness, roughness, friction etc

can be readily judged using the sense of touch.

In order to judge differences among various surface textures based on the

combined effect of the above mentioned surface properties, we conducted a

psychophysical experiment. The results from this experiment were used as

the ground truth for our framework.

In order to better visualize and analyze the results from the experi-

ment, Multidimensional Scaling (MDS) analysis was performed. The MDS

analysis provided us with a haptic texture perceptual space where all the

surface are located in an n-dimensional space and separated from one an-

17
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other based on the differences in their surface textures. The surfaces used

in this experiment are mentioned in Chapter 3.

4.1 Establishing Perceptual Haptic Texture Space

– A Psychophysical Experiment

The purpose of conducting this experiment was to find out the differences

perceived by human subjects while interacting with various surface textures.

These differences were measured and represented in the form of a dissimi-

larity matrix. MDS analysis was performed using this dissimilarity matrix.

As a result, the locations of different texture surfaces in a 3-D perceptual

space were found.

The following subsections are dedicated towards describing the details of

the psychophysical experiment. The procedure followed in this experiment

is similar to the one followed in [42, 48]. The design of the experiment

helped in finding the perceived differences between the texture surfaces in

comparison with one another.

4.1.1 Participants and Stimuli

A total of ten human subjects participated in the experiment. Ages of the

participants ranged from 22 to 31 years. None of the participants reported

any disabilities. All the participants were right-handed. The participants

had little or no expertise in the field of haptics or regarding the current

experiment. The participants were paid for their participation.

The 84 texture surfaces described in Chapter 3 were used as stimuli in

the experiment.
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4.1.2 Experimental Setup

A table was placed in front of the participants. Instructions to the par-

ticipants were provided on a printed piece of paper. After reading the in-

structions, the participants were encouraged to ask any questions regarding

the experiment. It was made sure that every participant understood the

procedure pf the experiment. The participants wore a blind fold to restrict

any visual cues during the experiment. They wore headphones playing pink

noise. The volume of the pink noise was set to such a level that it masked

the sound of interaction of hand with the surface texture, while at the same

time not hindering normal conversation. The volume was optimized so that

the participants could easily understand the instructions during experiment.

The texture surfaces were placed in an engraved aluminum plate to avoid

slipping. The experimental setup can be seen in Figure 4.1

Figure 4.1: Experimental setup for the cluster sorting experiment.

4.1.3 Procedure

Due to the large number of the texture surfaces used in the experiment,

it was decided to perform cluster sorting for finding the differences among

the surfaces. The advantage of cluster sorting is that it takes significantly
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lesser time as compared to pair wise comparison. This ensures that the

participant does not suffer from fatigue. Additionally, the authors in [48]

show that cluster sorting can accurately capture the dissimilarities across

different texture surfaces.

In the experiment, one texture surface was provided at a time. The par-

ticipants were free to use any exploring strategy for examining the texture

surface. The participants were asked to classify the 84 texture surfaces into

perceptually similar groups. Each experiment consisted of five trials and

the total number of groups in each trial were 3, 6, 9, 12, and 15. The num-

ber of groups in a particular trial were chosen randomly to avoid any bias.

The reason behind the variable number of groups across trials was that, on

one hand, the trials with a low number of total groups ensured a broader

classification of the texture surfaces. Or in other words, textures having

even a vague perceptual resemblance were grouped together. While, on

the other hand, the trials having a higher number of total groups provided

us with groups where the samples inside a given group were perceptually

very similar. At the end of each trial, once all the texture surfaces were

classified into the given number of groups, the participants were asked to

check all the groups for any errors in classification. In case of an error,

the participants were free to reassign a given surface into another group.

The participants were free to take short breaks of five to ten minutes after

every trial. On average the experiment took 150 minutes per participant

excluding the breaks.

4.1.4 Data Analysis

In order to convert the data from the experiment into meaningful informa-

tion, a similarity matrix was formed based on the scores assigned to each

texture surface. Scores were assigned to every surface after a given trial.
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Scores to a pair of surfaces being classified into the same group in any par-

ticular trial were assigned equal to the total number of groups in that trial.

Afterwards, the scores for every texture surface for every participant across

five trials were added together. This can be best explained with the help of

some examples. If two texture surfaces were classified into the same group

in four trials where the total number of groups were 3, 6, 9, and 12. Then

the total similarity score for these two surfaces with respect to each other

would be 3 + 6 + 9 + 12 = 27. Similarly, if two surfaces were classified into

the same group in only one trial where the total number of groups were 3,

the total similarity score for such a pair would be 3. In the first example the

surfaces were grouped together in four trials, thus showing that they were

perceptually very similar while in the second example the pair of surfaces

was grouped just in one trial signifying the fact that they were vaguely sim-

ilar. The scoring scheme adopted here is designed such that the surfaces

which are perceptually more similar attain a higher similarity score, which

is evident from the total score assigned to each pair in the above examples.

The scores for every participant across all the trials were used to form a

similarity matrix. This matrix contained the similarity scores of all the sur-

faces with all the other surfaces. The similarity matrices of the participants

were then converted into dissimilarity matrices. The dissimilarity matrices

were normalized and scaled from zero to 1000. At the end the dissimilarity

matrices of all the participants were averaged to form a single 84×84 dis-

similarity matrix. In the final dissimilarity matrix, a score of zero meant

that the corresponding pair of surfaces were grouped together in every trial

while a score of 1000 meant that they never never classified into the same

group.
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4.1.5 Results

Using the average dissimilarity matrix, non-metric MDS analysis was car-

ried out. MDS analysis provides us with all the texture surfaces in an

n-dimensional space where the distances among the surfaces are represen-

tative of the dissimilarity scores in the given dissimilarity matrix. In order

to visualize the surfaces in a euclidean space, the number of dimensions

for the MDS analysis are needed to be specified so that the distances in

the euclidean space are an exact representation of the dissimilarity matrix

scores. For this purpose, Kruskal stress [65] for the first ten dimensions was

calculated. The stress value at dimension three is 0.05, which is considered

as fair according to [49]. Additionally, the decrease in stress value beyond

dimension three is not significant. The Kruskal stress values for the first

ten dimensions are shown in Figure 4.2. The three dimensional perceptual

space as a result of the MDS analysis is shown in Figure 4.3. Since it is

difficult to follow a three dimensional graph on a two dimensional page, the

two dimensional projections of the three dimensional perceptual space are

also given in Figures 4.4, 4.5, and 4.6.
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Figure 4.2: Kruskal stress values for the first ten dimensions of multidimensional scaling analysis.
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Figure 4.4: XY projection of the three dimensional haptic texture perceptual space.
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Figure 4.5: XZ projection of the three dimensional haptic texture perceptual space.

4.2 Discussion

The perceptual haptic texture space (Figure 4.3) shows some distinctive

trends and groupings. Texture surfaces having similar perception are

grouped together. The scattering of the surfaces follows a horse shoe trend.

The right side of the graph is occupied by the roughest surfaces. The rough-
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Figure 4.6: YZ projection of the three dimensional haptic texture perceptual space.

ness of the surfaces decrease as we move along the horse shoe curve towards

the left side of the curve. The width of the horse shoe curve also follows a

trend. The inner side of the curve tends to have softer samples as compared

to the samples lying on the outside of the curve at the same location.

Upon a detailed inspection of the perceptual space, it can be seen that

the sand paper surfaces are separated from all the other surfaces. They form

a distinct group nearby the other rough samples. The sand paper surfaces

have very distinctive properties and are easily differentiable from all other

surfaces while also having a rather rough surface. Hence resulting in a very

separate little cluster.

The other surfaces are placed along a continuum with a gradual decrease

in the perceived roughness as we move from the right side of the curve

towards the left side. The surfaces with visible contours are perceived as the

roughest surfaces and occupy the right most portion of the space. Examples

of the macro contoured surfaces are steel mesh (S81), plastic mesh (S60),

Bumpy glove (S80), etc. Next are the surfaces with a rough surface, but

where the contours are not as readily visible e.g., artificial grass (S7), bubbly
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plastic (S18), lined wood (S75), etc. Moving further along the curve we

encounter the cloth like surfaces which have a vivid texture. These were

perceived as less rough as compared to the previous group due to the soft

nature of fabrics. These include the jeans (S84), lined cloth3 (S68), lined

cloth2 (S46), cloth hard cover (S30), etc. Next in line are the somewhat

smooth surfaces. These surfaces do not have any visible roughness, but some

texture can be felt when interaction is through touch. These surfaces are

the Smooth sand paper (S63), glitter paper (S13), cotton fabric (S29), etc.

Finally, the other end of the curve contains the extremely smooth surfaces.

These surfaces have a very fine surface and mostly they do not contain any

roughness. Examples of this type of surfaces are acrylic (S11), aluminum

(S67), smooth rubber (S40), smooth paper1 (S25), etc.

In the above discussion it can be seen that the surfaces classified into the

same groups are not necessarily of the same material. Plastics are classified

along side steel, paper is classified with metals, etc. The only criterion

on which the grouping has occurred is the similarity in perceived surface

texture.

4.3 Chapter Summary

A perceptual haptic texture space was built by carrying out a psychophysical

experiment. The experiment was a cluster sorting task where similarly

perceived samples were grouped together by human participants. As a result

of the experiment, a three dimensional perceptual space was established

using MDS analysis. The perceptual space showed distinct clustering and

groups of perceptually similar surfaces.



Chapter 5

Image Feature Space

In image feature space, the visual texture of a surface is described by the

image feature values extracted from the image of the surface. Various re-

searches have focused on texture recognition based on image feature val-

ues [66,67]. Others tried to find the surface roughness, which is an integral

part of surface texture, from image parameters [68,69]. Similarly, in [70,71]

the authors used learning algorithms to estimate the roughness of a surface.

In this chapter the various image features, extracted from the images

of the texture surfaces described in Chapter 3, are detailed. A total of 98

different kinds of image features are extracted from every image using well

known image feature extraction techniques. Thus we have a 98 dimensional

image feature vector for every image, and the image feature vectors for all

the surfaces constitute our image feature space.

The main aim of this research is to predict perceptual haptic texture

by using image features. Since the total number of the image features

is too high, it is not feasible to use all the image features for prediction.

The image feature vector was passed through a two step process to reduce

its size, shown in Figure 5.1. First, a sequential forward selection (SFS)

algorithm [72, 73] was applied, which provided us with the 30 best image

features. Second, parallel analysis [74, 75] was run which further reduced

the image feature vector to the ten best image features. These ten image

features were the most correlated image features and provided the most

27



5.2 IMAGE CAPTURING DETAILS 28

Figure 5.1: The two step feature selection process.

accurate predictions for the first three dimensions of the perceptual space.

5.1 Image Capturing Details

The finer details of an image depend on the scale and resolution of an

image. In an effort to remove the effect of scaling and resolution, all images

were captured from the same distance (100mm) using the same camera.

The camera is mounted on a tripod to avoid any undesired movements of

the camera. The camera used for capturing images was SIGMA Digital

Camera dp2 Quattro by Sigma Corporation. It has a focal length of 30mm,

a total resolution of 33 MP, and an effective resolution of 29 MP (5424×3616

pixels). The images were captured in high quality RAW format (loss less

compression, 14-bit). Afterwards, the images were cropped to a size of

300×300 pixels. The images were also converted into gray scale, before

extraction of image features, to make them color independent.



5.2 IMAGE FEATURE EXTRACTION 29

5.2 Image Feature Extraction

In order to cover every aspect of visual texture from the images, a variety of

image features were extracted from every image. A grand total of 98 image

features were calculated from the image of each texture surface. The details

of the all the image features are provided in the subsequent subsections.

5.2.1 Gray-Level Co-occurrence Matrix Features

The methodology behind calculating the image features from the GLCM

matrix was in accordance with the one defined in [51–53, 76]. The detailed

explanation and formulas for extracting the GLCM features can be found

in the respective papers.

The GLCM matrix is calculated by counting the number of times a

specific pair of neighboring pixels have occurred across the whole image.

Mathematically, the GLCM matrix p(i, j) shows the number of times the

gray-level pixel i occurred in neighborhood with the gray-level pixel j. The

distance and direction of the neighboring pixels can be defined according

to a specific purpose of use. In this study, GLCM matrices were calcu-

lated for three values of the distance parameter i.e., at 1, 2, and 4 units of

distance. Additionally, the direction parameter was also varied while keep-

ing the distance parameter constant. Every GLCM matrix was calculated

for four different directions by varying the offset value to 0°, 45°, 90°, and

135°. Each set of these four matrices were then averaged together to get

one GLCM matrix for every direction. Thus we had three averaged GLCM

matrices calculated at distances 1, 2, and 4.

After calculating the GLCM matrices, different image features were ex-

tracted from every matrix. The image features calculated at a different

distance were considered as different from one another. A total of 19 image
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features were each of the three GLCM matrices. Thus we had a total of 57

GLCM image features. The details of all the image features calculated from

GLCM matrices are given in Table 5.1.

Table 5.1: Details of the GLCM features used in this study.

Gray-Level Co-occurrence Matrix Features

(at d = 1, 2, and 4)

Energy Dissimilarity

Entropy Contrast

Cluster Prominence Correlation

Homogeneity Sum of Squares

Sum Average Sum Variance

Sum Entropy Difference Variance

Difference Entropy Maximum Probability

Cluster Shade Autocorrelation

Information Measures of Correlation (1) Inverse Difference Moment Normalized

Information Measures of Correlation (2)

5.2.2 Gray-Level Run-Length Matrix Features

The GLRLM features were extracted based on the recommendations pro-

vided in [57–60]. For detailed implementation of the GLRLM features, the

corresponding papers can be referred.

The GLRLM matrix is calculated by counting the number of times a

specific gray-level value, spanning across a definitive length in a specified

direction, has occurred. Or in other words, the GLRLM matrix p(i, j) is

the number of runs of gray level pixels i having run length j. Similar to the

GLCM matrix, the GRLRM matrix was also calculated for four different
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directions i.e., 0°, 45°, 90°, and 135°, and then averaged together [61].

A total of 13 image features were calculated from the averaged GLRLM

matrix. The details of these image features are provided in Table 5.2.

Table 5.2: Details of the GLRLM features used in this study.

Gray-Level Run-Length Matrix

Short Run Emphasis Long Run Emphasis

Gray-Level Variance Gray-Level Nonuniformity

Run-Length Variance Run-Length Nonuniformity

Run Percentage Short Run Low Gray-Level Emphasis

Short Run High Gray-Level Emphasis Low Gray-Level Run Emphasis

Long Run Low Gray-Level Emphasis High Gray-Level Run Emphasis

Long Run High Gray-Level Emphasis

5.2.3 Gray-Level Size Zone Matrix Features

The GLSZM features were calculated in accordance with the guidance pro-

vided in [57–60]. For detailed implementation of the GLRLM features, the

corresponding papers can be referred.

The GLSZM matrix is calculated by counting the number of zones of a

specific gray-level value and specific size, in any direction. Mathematically,

the GLSZM matrix p(i, j) represents the number of zones of gray-level pixel i

and size j. The GLSZM matrix does not require to be measured in a specific

direction, since by default it considers all the directions while making the

zones.

Similar to GLRLM matrix, 13 image features were also calculated from

the GLSZM matrix. The details of these image features are given in

TableTab:GLSZM.
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Table 5.3: Details of the GLSZM features used in this study.

Gray-Level Size Zone Matrix

Small Zone Emphasis Large Zone Emphasis

Gray-Level Nonuniformity Zone-Size Nonuniformity

Zone Percentage Gray-Level Variance

Small Zone Low Gray-Level Emphasis Zone-Size Variance

Small Zone High Gray-Level Emphasis High Gray-Level Zone Emphasis

Large Zone Low Gray-Level Emphasis Low Gray-Level Zone Emphasis

Large Zone High Gray-Level Emphasis

5.2.4 Neighborhood Gray-Tone Difference Matrix Features

The directions provided in [56] were used to calculate the NGTDM features.

For details implementation and image features the readers can refer to the

original paper.

The NGTDM matrix is calculated by measuring the difference between

the gray-level value of a pixel and the average gray-level values of its neigh-

boring pixels. mathematically, p(i) is the gray-level difference between the

gray-level i and the average gray-level value of its neighbors.

A total of five features were calculated from the NGTDM matrix, which

are provided in Table 5.4.

5.2.5 Gradient and Percentile Features

The gradient of a gray scale image was calculated using the MAT-

LAB�command imgradient. This command provided us with the gradient

magnitude. Using this gradient magnitude, three first order statistics were

calculated namely, the kurtosis, skew, and nonzero. The kurtosis and skew

are self explanatory terms and need no further explanation. The nonzero of
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Table 5.4: Details of the NGTDM features used in this study.

Neighborhood Gray-Tone Difference Matrix

Coarseness

Contrast

Busyness

Complexity

Strength

a matrix is percentage of the ratio of non-zero terms to the total terms in a

matrix. Apart from the gradient features, a number of percentile features

were also calculated.

Following [61], the three statistics from gradient along with the per-

centile statistics [77] were used as image features. The details of these

features are provided in Table 5.5.

Table 5.5: Details of the Gradient and Percentile features used in this study.

Percentile Features Gradient Features

Percentile 1% Non-Zero

Percentile 25% Kurtosis

Percentile 50% Skew

Percentile 75%

Percentile 90%

Percentile 99%

5.2.6 Spatial Frequency Feature

Spatial frequency defines the occurrence of sinusoidal components in a given

material per unit area. Or, in other words, it refers to the number of tran-
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sitions from high intensity (white) to low intensity (black) pixels in a given

image. In order to find the sinusoidal components or the transitions in the

gray scale images, fast Fourier transform (FFT) of the images was calcu-

lated. The FFT provided us with the total number of transitions in each

image. Now, in order to translate these transitions into transitions per vi-

sual degree, the number of visual degrees covered by the texture surface

were calculated. This was easily achieved since the actual size of the tex-

ture surfaces was known. The ratio of total transitions to the size of the

texture surfaces provided us the spatial frequency of the images. The spatial

frequency of the images was used as an image feature.

5.2.7 Binarized Statistical Image Features

The Binarized Statistical Image Features (BSIF) [62] is a local image de-

scriptor which captures the texture information of an image in the form

of histograms. This descriptor makes use of filters obtained from statistical

properties of natural images for creating the histograms. Since, the textures

in our dataset are also natural textures, therefore, BSIF was the best choice

for the current study. There are two parameters in the BSIF descriptor, the

filter size and the bit length of each string. For the current study, a filter size

of 15×15 and a string length of 12 bits was experimentally selected. The

BSIF features were calculated for all the 84 texture surfaces in the form of

histograms.

BSIF features are not part of the image feature vector, instead they are

used as part of the automatic haptic model assignment process (discussed

in Chapter 6).
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5.3 Image Feature Selection

A grand total of 98 image features were calculated from the image of each

texture surface. All these image features are reported to capture various

aspects of surface texture and thus none of them can be deemed as insignif-

icant before thorough testing. But given the large size of the image feature

vector (98 image features), it was not feasible to incorporate all the image

features.

For this purpose, the image feature vector was subjected to a two step

wrapper based image feature selection process. In the first step, the image

features most correlated with the first three dimensions of the perceptual

space were selected through a Sequential Forward Selection (SFS) algorithm.

The SFS gave us the best 30 image features from the set of 98.

In the second step, these 30 image features were subjected to a Parallel

Analysis (PA) test to check whether the correlation values in SFS were

achieved by chance or they bare some significance. The best ten image

features according to the PA test, with the highest predictive ability with

respect to the first three dimensions of the perceptual space obtained from

MDS analysis, were selected at the end of the process.

5.3.1 Sequential Forward Selection

The basic concept of the sequential search algorithms is that they add or

remove features one at a time. In forward selection, they start with an

empty set and iteratively add one feature to the set until the termination

criterion is met.

In this study, a sequential forward selection algorithm was used to reduce

the dimensionality of the image feature vector. The input to the algorithm

was the vector comprising of the 98 image feature for all the 84 texture
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surfaces. The most correlated subset of the image feature vector which

showed the highest predictive ability towards the first three dimensions of

the perceptual space had to be selected.

The algorithm considers one dimension of the perceptual space at a

time. For every single dimension of the perceptual space, the algorithm

starts with the most correlated image feature. A linear regression model is

built from this image feature, which is used to predict the same dimension.

The algorithm then adds a second image feature together with the old one

and predicts the associated dimension of perceptual space. This process is

repeated until a predefined termination criteria is being met. The termina-

tion criteria in this case is either of, the prediction error being significantly

reduced i.e., pvalue = 0.05 using partial F-test, or a total of ten image

features being selected. The total number of ten image features was empiri-

cally selected. Additionally, ten image features were considered sufficient to

explain the variability along one dimension of the perceptual space. These

steps were repeated three times to obtain the best image features for the

first three dimensions of the perceptual space.

It was seen that the predictive error for all three dimensions never re-

duced significantly for the first ten most correlated image features. None of

the individual features were selected for more then one dimension, all ten

features of every dimension were different. Therefore, a total of 30 image

features were selected at the end of the sequential forward selection pro-

cess. The prediction errors for most correlated ten image features for their

respective dimensions is shown in Table 5.6.

5.3.2 Parallel Analysis

Parallel analysis is one of the most accurate methods for factor reten-

tion [78, 79]. While in [80] Glorfeld claimed that there is little reason to
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Table 5.6: P-values of upto ten image features for the first three dimensions of MDS using

partial F-test. None of the values are greater than 0.05. While, only the three bold face values

are greater than 0.01.

Number of

Image Features

p-value

Dimension 1 Dimension 2 Dimension 3

1 9.02e-07 2.70e-09 0.0003

2 3.33e-06 2.11e-08 0.0003

3 6.09e-08 1.01e-07 0.0008

4 1.19e-07 3.87e-07 0.002

5 1.37e-07 2.13e-07 0.003

6 4.33e-07 5.90e-07 0.006

7 1.10e-06 1.21e-06 0.007

8 1.10e-06 4.11e-08 0.012

9 2.23e-06 1.17e-07 0.021

10 2.30e-06 2.69e-07 0.01

use any method other than PA for factor retention. In PA the important

or significant factors are retained by comparing the predictive ability of the

real dataset with that of a randomly generated dataset having the same

dimensions as the real one.

In the current study, the predictive ability of the reduced image feature

set of 30 image features was compared against the predictive quality of a

randomly generated data matrix. It was assumed, if there exists a relation-

ship between the image features and the perceptual space, the predictive

quality of the image features should be higher than that of the random data.

The reduced image feature set was further divided into subsets of three

image features. The predictive ability of each of these subsets was tested

by predicting the first three dimensions of the perceptual space. Similar to
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the SFS, the perceptual space dimensions were considered one at a time.

Prediction was done using a linear regression model. The output from the

regression model was the predicted co-ordinates of the surfaces in the re-

spective dimension of the perceptual space. As a next step, the correlations,

between the predicted values of a specific dimension and the actual values

of the perceptual space dimension, were measured and stored.

At the other hand, a random data matrix was generated which had the

same number of columns and the same number of rows as the reduced image

feature set. The randomly generated matrix was also divided into subsets of

three, which were used to predict the first three dimensions of the perceptual

space. The correlation values between the predicted and actual dimensions

were recorded.

It must be noted that the correlation values measured from the random

data matrix are the values which can be achieved by chance and bare no

significance. The correlation values of the reduced image feature set should

be higher than those achieved by the random data matrix [81,82]. Therefore,

only those feature subsets of the reduced image feature set can be deemed

significant which show a correlation value higher than that of the random

data matrix. The correlation values for the subsets of reduced image feature

set (see green bars) and random data matrix (see red bars) are shown in

Figure 5.2.

As shown in Figure 5.2, the maximum correlation value for a random

data matrix subset is 0.47. For a more robust result, a value of 0.5 was

considered instead of 0.47. Going forward, only those feature subsets are

considered significant which show a correlation value higher than 0.5. Since

our requirement is to select the best features while every feature subset

consisted of three image features, the frequency of occurrence of a particular

image feature in the significant feature subsets was calculated. The best
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image features were the ones which occurred most often in the significant

feature subsets. As a result of this exercise, ten image features with the

highest frequency were selected as the best image features. The best ten

image features are provided in Table 5.7. These image features will be

used in the automatic haptic model assignment, which be discussed in the

upcoming chapters.

Table 5.7: The best ten image features obtained as a result of sequential forward selection and

parallel analysis.

No. Image Feature

1 Gray-Level Non-Uniformity (GLRLM)

2 Gray-Level Non-uniformity (GLSZM)

3 Small Zone High Gray-Level Emphasis (GLSZM)

4 Percentile 25% (Percentile)

5 Correlation (GLCM at d = 4)

6 Homogeneity (GLCM at d = 4)

7 Information Measure of Correlation (2) (GLCM at d = 4)

8 Inverse Difference Moment Normalized (GLCM at d = 4)

9 Homogeneity (GLCM at d = 2)

10 Information Measure of Correlation (1) (GLCM at d = 2)
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5.4 Chapter Summary

This chapter describes the details about extracting image features from

the images of the texture surfaces mentioned in Chapter 3. A total of 98

different image features were calculated from each image. The image feature

vector was then progressively reduced to select the best image features which

are most correlated with the perceptual space. A wrapper based selection

methodology was applied for the reduction of image features. Sequential

forward selection and parallel analysis techniques were part of the wrapper

methodology. At the end of the selection process, the image feature vector

was reduced to a total of ten image features.



Chapter 6

Automatic Haptic Model Assignment

The main aim of this study is to find a relationship between visual image

texture and perceived haptic texture. And then use that relationship to

build a library from where haptic models could be assigned to new - outside

library - texture surfaces based on their image features alone. For accom-

plishing this aim, a perceptual haptic texture space and an image feature

space has been established. As discussed in Chapter 4, the perceptual space

showed distinct groupings of perceptually similar texture surfaces. While,

in Chapter 5, it was substantiated that the image feature space showed

some relation with the perceptual space. Based on this knowledge, it can

be assumed that the image feature space can also be classified into groups

of perceptually similar images.

For this purpose, a one-versus-rest Multi-Class Support Vector Machine

(MC-SVM) [83] in conjunction with the K-means algorithm was used for

classifying the image feature space. Once MC-SVM model was trained using

the already established perceptual and image feature spaces, it was readily

used for classifying newly encountered texture surfaces into perceptually

similar clusters of the image feature space. Subsequently, a unique match

to the new texture surface was assigned using Binarized Statistical Image

Features (BSIF) [62].

42
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6.1 Relationship Between Perceptual Haptic Tex-

ture Space and Image Feature Space

Since, the distribution of the images in the image feature space could not be

identified, it was not feasible to use simple classification techniques which

deal with linearly separable data. In this study our requirement was a

classification method which could seamlessly handle both linearly separable

and inseparable data. A space in which data clusters can be separated

linearly is called as linearly separable space.

6.1.1 Training Multi-Class Support Vector Machine

Support Vector Machine (SVM) algorithms have been widely used in lter-

ature for binary classification [84–87]. But, in the current study, our aim is

to classify the image feature space into multiple perceptually similar clusters.

For this purpose, a one-versus-rest MC-SVM was used similar to ones used

in [88–90] A simple MC-SVM can work very well when data are distributed

into fairly differentiable clusters. But, if the data clusters are diffused into

one another, as might be the case in the image feature space, a simple SVM

classification can be misleading and erroneous. Therefore, the MC-SVM

was used in conjunction with the a Radial Basis Function (RBF) kernel

for clusterizing the image feature space [91, 92]. The parameter sigma was

experimentally tested for different values and the best results were obtained

at sigma = 4.

For training the MC-SVM model, we need the input data to be classi-

fied and class labels for these data. The reduced image feature set of ten

features for all the 84 texture surfaces was used as an input for training the

MC-SVM model. While, for providing class labels for these data, K-means

algorithm [93] was used for clusterizing the haptic texture perceptual space
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and to classify the surface textures into groups. As reported in Chapter 4,

perceptually similar surfaces were located in close proximity to one another,

therefore, the K-means classification provided us with groups having percep-

tually similar texture surfaces. Thus, the labels provided to the MC-SVM

were based on perceptual similarity of the texture surfaces. In the K-means

algorithm, the value of k was subjectively decided to be 16. Since, the

overall range of surfaces used in this study can be broadly classified into 16

categories. The perceptual space after the K-means clusterization can be

seen in Figure 6.2. The imbalance in the variance of the groups increases if

the total number of groups are increased beyond 16. While, a lower num-

ber of total groups results in perceptually different surfaces being grouped

together.

As a result of this exercise, the image features were labeled from per-

ceptual clusterization and the MC-SVM was trained on this data. Con-

sequently, a Haptic Texture Library was formed where image features of

texture surfaces were directly associated with the perceptual haptic texture

of the surfaces. The trained model of MC-SVM was used to classify new

texture surfaces to perceptually similar groups based on the image features

of the new surface.

6.2 Automatic Haptic Model Assignment

The automatic haptic model assignment is a two step process, as shown in

Figure 6.1. First, the trained MC-SVM model is used to classify the newly

encountered texture surface into a perceptually similar group based on its

image features. Second, a unique match for the new surface from within the

group is found using BSIF features, an image based classification technique.

The reduced image feature set of ten image features is calculated for the
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Figure 6.1: The process of automatic assignment of haptic models to new texture surfaces in

the perceptual space.

new surface, which is then used as a test input to the trained MC-SVM

model. Using the image features, the trained MC-SVM model classifies the

new surface into one of the groups. This texture surfaces in this group are

considered as perceptually most similar to the new surface.

The BSIF features for all the texture surfaces in the library are already

extracted and stored. After the new surface is classified into one of the

groups, its BSIF features are calculated and compared to all the surfaces

within the selected group. The haptic model of the texture surface, within

the group, which is closest to the new surface is selected and assigned to the

new surface. The closest match is found using the chi-squares distances.
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6.3 Chapter Summary

This chapter details the process of automatic haptic model assignment. A

relationship between haptic texture perceptual space and the image feature

space was established using a one-versus-rest MC-SVM with and RBF kernel

in conjunction with K-means clustering. This relationship was a first step

in automatic haptic model selection process. It was used to assign new

texture surfaces into perceptually similar texture groups. Afterwards, a

unique match for the new surface was selected using BSIF features.



Chapter 7

Evaluation

A new set of 21 real life texture surfaces were used to evaluate the algorithm.

The algorithm assigned haptic texture models to the new surfaces. In order

to cross check if the haptic models assigned by the automatic haptic model

assignment algorithm are truly perceptually the best models for the new

surfaces, a psychophysical experiment was designed.

The new texture surfaces along with the old ones (84 surfaces) were

used in the experiment. A new perceptual space was established using

MDS analysis. The purpose of the experiment was to find out the location

of the new surfaces with respect to the old ones in the perceptual space.

The locations of the new surfaces in the new perceptual space were used to

examine the validity of the automatic assignment algorithm.

7.1 Psychophysical Experiment

The experiment was a cluster sorting task similar to the one in Chapter 4.

The details of the experiment are given in the following sub-sections.

7.1.1 Participants

Six participants took part in the experiment. They were paid for their

participation. None of the participants reported any disabilities. All the

participants were right handed. None of the participants in this experiment

48
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Figure 7.1: New textured surfaces used for evaluation.

were part of the previous experiment. The participants had little or no

knowledge about the procedure of this experiment or haptics in general.

7.1.2 Stimuli

A total of 105 real life texture surfaces were used in this experiment. A new

set of 21 real life texture surfaces were used in addition to the 84 texture

surfaces mentioned in Chapter 3. The new sample were also mounted on

acrylic plates of size 100×100×5 mm. The new set of texture surfaces is

shown in Figure 7.1, while their details are provided in Table 7.1.

7.1.3 Procedure

The experiment was a cluster sorting task where participants were asked to

classify the texture surfaces into perceptually similar groups. Each partici-

pant had to conduct three trials. The total number of groups per trial were
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Table 7.1: Details of the new textured surfaces used for evaluation.

S. No Surface Name S. No Surface Name

85 Smooth sandpaper 96 Hard board

86 Rough sandpaper 97 Gift Card

87 Very rough sandpaper 98 Towel

88 Steel mesh 1 99 Textured cloth 1

89 Model brick 100 Textured cloth 2

90 Steel mesh 2 101 Styrofoam

91 Abrasive sponge 102 Playing cards

92 Lined plastic 103 Hard cover

93 Scrub 104 Glossy plastic

94 Sponge 105 Bandage

95 Lined wood

6, 9, and 12. The order was randomly selected across participants to remove

ordering bias. The participants were not informed about the inclusion of

a new set of texture surfaces. They treated all the surfaces as new. The

rest of the experimental details and experimental setup was the same as the

one discussed in Chapter 4. Total time for one participant was around 150

minutes.

7.1.4 Data Analysis and Results

After the experiment, scores to the surfaces were assigned in a similar man-

ner to the experiment in Chapter 4. The scores were used to form a dissimi-

larity matrix and then scaled from zero to 1000. A score of zero meant that

the two surfaces were perceptually similar, while a score of 1000 meant that

the two surfaces were perceptually opposite to one another and were never
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classified into the same group in the experiment. In order to visualize the

dissimilarity scores in the form of a space, MDS analysis was performed on

the dissimilarity matrix. A new three dimensional space was established.

In this space the new surfaces were located in addition to the old surfaces.

The space established as a result of the above exercise was also clustered

into 16 groups using K-means clustering. The new space after K-means

clustering can be seen in Figure 7.2.

7.1.5 Evaluation Criteria

On one hand, the automatic haptic model assignment algorithm was used to

assign haptic models to the new texture surfaces based on their image fea-

tures. On the other hand, in the experiment, the participants classified the

new texture surfaces to different groups along with the old texture surfaces.

After applying K-means to the new space, made up of the combination of

the 21 new surfaces and 84 old ones, all the surfaces were classified into per-

ceptually similar groups. The new textured surfaces also appeared in these

groups along side the old surfaces. These groups would work as the ground

truth for the automatic haptic model assignment algorithm. An automatic

assignment of a haptic model would be deemed as correct only if both the

new surface and the corresponding assigned model appeared in the same

perceptual group in the new space.

Based on this strategy, the haptic models assigned to all the new surfaces

evaluated. A total of 15 out of the 21 new surface texture were assigned

perceptually correct models i.e., the new texture surface and corresponding

assigned model were in the same perceptual group. The haptic models

assigned to the 21 new texture surfaces are presented in Table 7.2. Figure 7.2

highlights the new texture surfaces and the corresponding assigned models

inside the new perceptual space.



7.1 PSYCHOPHYSICAL EXPERIMENT 52

Table 7.2: Haptic textures models assigned to the 21 new texture surfaces used for evaluation.

New Texture Surface Assigned Model Remarks

85 30 Correct

86 26 Correct

87 61 Correct

88 47 Correct

89 60 Correct

90 76 Correct

91 73 Correct

92 73 Correct

93 7 Correct

94 7 Correct

95 73 Wrong

96 21 Wrong

97 50 Correct

98 7 Correct

99 24 Correct

100 66 Wrong

101 13 Correct

102 72 Wrong

103 48 Correct

104 61 Wrong

105 43 Wrong

Average correct classification rate 71.4%
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Figure 7.2: The new perceptual space made up of 21 new and 84 old texture surfaces. The different colors represent the different groups as a result of K-means

clustering. The stars show the centroids of these groups. The new surfaces are written in red color while the assigned models are shown in bold black color.
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Figure 7.3: Histogram of the distances between new surfaces and the assigned haptic models

from the library.

After checking for the correct perceptual group assignment, it was im-

portant to check if the assigned models and new texture surfaces appear

closer to each other inside a group or not. This closeness was checked in

relation to the overall variance. The variance of all the perceptual groups

was calculated and averaged out. The average variance of all the groups was

188.7 units. Based on this variance, the new surfaces having smaller dis-

tances as compared to average variance are considered as perceptually very

similar to their assigned model from the library. The distances histogram

in Figure 7.3 shows the majority of the surfaces exhibit far less distances as

compared to the average variance. This means that the majority of assigned

models are perceptually very similar to the new surfaces.
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7.2 Discussion

From Figure 7.2, it can be seen that texture surfaces having visible contours

(S88, S89, S90 etc.) or the ones having some degree of roughness in texture

(S86, S87, S93 etc) are quite accurately classified. The image features from

these surfaces were very clear and the algorithm could readily differentiate

the surfaces from one another. On the other hand, the smooth surfaces

(S102, S104) were incorrectly classified due to the fact that the images

captured from these surfaces could not portray the surface micro geometry.

This can be accredited to the limitation of hardware since the camera could

not capture the surface details for these texture surfaces. Thus the image

features from these surfaces were not clear and the algorithm classified them

incorrectly.

Another set of surfaces that was wrongly classified was the set of S100

and S95. S100 was assigned a moderately rough sandpaper (S66). Upon a

closer inspection it was revealed that the actual surface texture of the two

surfaces was quite similar and that the two should have been assigned to

the same group, while building the actual perceptual space, by the human

subjects. Same was the case for S95 which was assigned S73. These two

also resemble each other and should have been placed in the same group.

After careful deliberation on the experimental process it was noted that

since S66 was a sandpaper and as soon as it was encountered, human sub-

jects would directly assign it to the group where other sandpapers were

previously placed. This assignment usually took place without considering

the actual surface details, instead the basis for assignment were the mate-

rial properties of the surface. Additionally, sandpapers have a very peculiar

surface and are easily recognizable. This fact also aided the material based

assignment process. At the same time, S100 was equally rough but it was a
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fabric. The face that it was a fabric played a major role in it being assigned

to a completely different as compared to the said sandpaper.

The phenomenon where surfaces were classified based on their mate-

rial properties instead of actual textural differences has been called as Pre-

Judgement in this study. In pre-judgment participants used their previous

knowledge for classifying a said surface. A similar scenario developed for the

S95 and S73 pair, where S95 was a wood (a classic case of pre-judgement)

and S73 was a kite paper. Further details about pre-judgement are provided

in Chapter 8.

7.3 Chapter Summary

In this chapter the automatic haptic model assignment algorithm was eval-

uated using 21 new real life textured surfaces. A psychophysical experiment

was conducted to authenticate the validity of the algorithm. A new per-

ceptual space was built using the 21 new texture surfaces and the 84 old

ones. The algorithm correctly classified 71.4% of the new texture surfaces

by assigning perceptually the most similar haptic model.



Chapter 8

Perceptual Differences Between

Bare-handed and Tool-Based Interaction

In Chapter 7 it was shown that participants used pre-judgment in evaluating

texture surfaces while using bare hands. This led us to explore if pre-

judgment is a property associated with bare handed interaction or can it

also occur in the tool based interaction. Another motivation for this study

was the fact that most rendering environments provide tool based haptic

feedback, which is contrary to our every day experience where we use bare

hands for interacting with different objects.

The main focus of this chapter is to evaluate the perceptual differences

between bare handed and tool based interaction with texture surfaces. For

this purpose, perceptual spaces were established for both modes of interac-

tion using a cluster sorting experiment. A total of 31 texture surfaces were

used, a subset of the texture surfaces used in Chapter 3. Additionally, an

adjective rating experiment was also conducted which helped in quantifying

the differences in the perceptual space by comparing the affective properties

of the texture surfaces.

8.1 Experiment - Perceptual Space

The first experiment was a cluster sorting task similar to other experiments

carried out in the previous chapters. The details of the experiment are given

57
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in the following subsections.

8.1.1 Participants and Stimuli

A total of six participants took part in the experiment. All participants were

males except one. They reported no disabilities. Their ages were between

23 and 30 years. They were paid for their participation.

The stimuli used in this experiment were 31 real life texture surfaces.

These 31 surfaces were a subset of the 84 texture surfaces discussed in

Chapter 3. It was not feasible to use all the 84 surfaces in this study.

Therefore, the surfaces for this study were selected in such a way that all the

different kinds of textures present in the set of 84 surfaces were sufficiently

represented. The 31 texture surfaces are given in Figure 8.1 and their details

are provided in Table 8.1

Figure 8.1: The real life surfaces used in the experiment

.
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Table 8.1: Details of the 31 surfaces used in this study. *The average particle size of the

sandpapers.

S. No Surface Name S.no Surface Name

1 Aluminum 17 Jeans

2 Acryl 18 Rough cloth 1

3 Sandpaper (1 mm)* 19 Rough cloth 2

4 Glossy paper 20 Wet tissue

5 Thin rubber 21 Lined Wood

6 Lined rubber 22 Hard board

7 Thin rubber 23 Lined Wood

8 Artificial grass 24 Thread mesh

9 Sandpaper (36 mm)* 25 Lined Kite paper

10 Sandpaper (6.5 mm)* 26 Textured shoe pad

11 Sandpaper (192 mm)* 27 Textured rubber

12 Plywood 28 Textured hard rubber

13 Textured Cloth 29 Model Roof tile

14 Contoured cloth 30 Steel mesh

15 Thick cloth 31 Thick rubber

16 Towel

8.1.2 Procedure

The experimental setup used in this experiment was similar to the ones

carried out in Chapter 4. Figure 8.2 shows the setup for this experiment.

The experiment was a cluster sorting task where participants were asked

to classify the given 31 texture surfaces into perceptually similar groups.

They were provided one sample at a time. A total of three trails were

conducted per participant. Since the total number of texture surfaces was
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not very large, the total number of groups per trial were 3, 6, and 9. After

classification of all the surfaces, the participants were given a second chance

to check for any mistakes in classification.

The experiment was separately conducted for bare handed and tool

based interaction. The order of the two modes was reversed across par-

ticipants to avoid ordering bias. In the bare handed interaction, the partici-

pants were allowed to use their index finer. In the tool based interaction, the

interaction was through a rigid aluminum tool in the shape of a pen. The

tip of the tool was hard plastic having a diameter of 7 mm and a length of

14 cm. The tool can be seen in Figure 8.3. The choice of scanning strategy

was given to the participants.

8.1.3 Data Analysis

The experimental data was converted into a similarity matrix using the

scoring system discussed in Chapter 4. Later on the similarity matrix was

converted into a dissimilarity matrix and scaled from zero to 1000. We

calculated separate dissimilarity matrices for both modes of interaction.

8.1.4 Results

The dissimilarity matrices was converted into two different perceptual spaces

by scaling them with MDS. The Kruskal stress values for both the percep-

tual spaces are given in Figure 8.4. From the figure we can see that at

dimension four the values of stress for bare handed and tool based interac-

tion are 0.12 and 0.15, respectively, which are considered are fair according

to [49]. Therefore a four dimensional perceptual space was established for

both modes of interaction. Since, we can not represent four dimensions on a

paper, two two-dimensional projections of the perceptual space were made.

As we have to compare the two perceptual spaces, they are shown together
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Figure 8.2: The experimental setup and environment for the experiment. Top is tool based

interaction, bottom is bare handed interaction.

Figure 8.3: The aluminum tool which is being used for interaction in tool-based interaction. Its

has a tip diameter of 7 mm, and a total length of 14 cm.
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Figure 8.4: Kruskal stress for the first fifteen dimensions of both the perceptual spaces.

in Figures 8.5, Figure 8.6. Figure 8.5 shows the first two dimensions of both

the perceptual spaces, while Figure 8.6 shows the third and fourth dimen-

sion. The orientation of the axes in the MDS plot are irrelevant, so the

plots for tool based interaction are rotated around for better visualization.

Furthermore, the scaling of both the graphs was the same, therefore, they

can be combined together without any scaling implications.

The perceptual space for the bare handed interaction in Figure 8.5 (see

blue circles) show three very distinct clusters. The cloth-like surfaces are

located in the left side of the graph, the rough surfaces take the top-center

location while the right side of the graph consists of the smooth samples.

The fact, that the clusters are very distinct and have relatively clear bound-

aries, means that it was easier to clearly distinguish the different texture

surfaces.

On the other hand, the perceptual space for tool based interaction (Fig-

ure 8.5 see red circles) shows three clusters, but these groups are more

diffused in nature. The nature of clusters is the same as bare handed per-

ceptual space but the boundaries are not as clearly defined. This means
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that the major texture categories were easily identifiable using both modes

of interaction, but in the tool based interaction the minor differences in

similar textures were also easily discriminable. This resulted in the diffused

nature of the clusters.

Figure 8.6 shows the third and fourth dimension of both the modes of in-

teraction. First we look at the bare handed perceptual space (see blue dots).

The surfaces along the third dimension are very clearly scattered while the

most of the samples along the fourth dimension are tightly clustered and

do not show any visible trend. The third and fourth dimensions of the tool

based perceptual (see red dots in Figure 8.6) space shows clear scattering

of the surfaces. Despite the clear scattering, the surfaces seem to follow no

trends at all. Unlike the first two dimensions, where the perceptual spaces

showed similar characteristics, the third and fourth dimension for the two

modes of interaction are quite different. This means that totally different

classifying strategies were used by the participants along these dimensions.

8.2 Experiment - Adjective Rating

This experiment was conducted to evaluate the affective properties of the

texture surfaces. The surfaces are rated against a set of adjective pairs to

find out the adjectives which can define the properties of the surfaces. The

details of this experiment are provided in the following subsection.

8.2.1 Participant and Stimuli

The six participants who took part in the perceptual space experiment were

also part of this experiment. The experimental setup and conditions were

the same as the first experiment.
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Table 8.2: The list of adjectives used in the adjective rating experiment.

Sticky Slippery Flat Even Irritating

Rough Hard Dense Bumpy Pleasant

Sharp Thick Uneven Dull Sparse

Smooth Prickly Thin Soothing Soft

8.2.2 Procedure

The adjective rating experiment was divided into two parts. First, a list

of adjectives was prepared which could describe the affective properties of

all the surfaces used in the experiment. The participants were asked to feel

all the surfaces and choose appropriate adjectives that could express the

feeling of the surfaces. A list of 20 adjectives was provided, from which the

participants had to chose the relevant adjectives. The list of these adjectives

is given in Table 8.2.

The adjectives which were not selected by any participant were dis-

carded. From the selected adjectives, adjective pairs were chosen in such

a way that every adjective had a corresponding adjective with an oppo-

site meaning. As a result of this procedure, we were left with five pairs of

adjectives, which are shown in Table 8.3.

These five adjective pairs were used in the second part of the experiment.

A Graphical User Interface (GUI) was built for conducting the experiment.

There were sliders marked on the GUI having the adjective pairs at either

end. The slider was not marked with any numbers and the total length of

the slider on the screen was kept to 127 mm according to [94]. The values

from the sliders were scaled from zero to 100. At the end, scores from all

the participants were averaged.
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Table 8.3: List of adjective pairs after first part of the adjective rating experiment.

Adjective Pairs

Rough - Smooth

Flat - Bumpy

Sticky - Slippery

Hard - Soft

Irritating - Pleasant

8.2.3 Results

The adjective scores obtained from the adjective rating experiment provided

us with the qualitative properties of the texture surfaces. To further validate

the quality of these scores, correlation between the adjective scores and the

perceptual space dimensions was calculated. The correlation values are

shown in Table 8.4. It is evident that the correlation values of the adjective

pairs Rough - Smooth and Flat - Bumpy for second dimension of both the

perceptual spaces are quite high. It means that these two adjective pairs can

account for a large portion of the variance along this dimension. Whereas,

the correlations for the third and fourth dimension are quite low for most

of the adjective pairs. This means that trends along these dimensions are

not straightforward and the participants used totally other properties of the

surface texture for classifying along these dimensions.

Multi-linear regression was performed to establish a relationship between

the adjective pairs and the perceptual spaces. The inputs to the regression

algorithm were the adjective scores and the Cartesian coordinates of the

surfaces in the perceptual spaces. The linearly regressed lines in Figure 8.5

and Figure 8.6 show the adjective pairs. The length of the line is directly

proportional to goodness of fit or the correlation between the associated
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Table 8.4: Correlation between the five adjective pairs selected after the first part of adjective

rating and the perceptual spaces for the bare handed and tool based interaction. The highlighted

correlation values are considered as significant.

Adjective Pair Tool Based

Rough-Smooth 0.46 -0.76 0.12 -0.17

Flat-Bumpy -0.48 0.73 0.03 -0.02

Sticky-Slippery 0.15 -0.61 -0.3 0.06

Hard-Soft -0.49 -0.06 0.57 -0.25

Irritating-Pleasant 0.19 -0.74 -0.01 -0.02

Bare Handed

Dim 1 Dim 2 Dim 3 Dim 4

Rough-Smooth 0.36 -0.78 0.13 -0.27

Flat-Bumpy -0.27 0.88 -0.11 -0.01

Sticky-Slippery 0.04 -0.58 0.13 -0.21

Hard-Soft -0.57 0.26 0.27 -0.35

Irritating-Pleasant 0.05 -0.51 0.33 -0.41

adjective pair and the perceptual space. Thus, a longer line means that the

corresponding adjective pair can explain a large amount of variance along

a specific dimension. The two adjective pairs which showed the highest

correlation were Rough- Smooth and Flat - Bumpy. The adjective scores for

these adjective pairs are provided in Figure 8.7 and Figure 8.8, respectively.

8.3 Discussion

The differences in the perceptual spaces for the two modes of interaction

can be explained with the help of the differences in the adjective rating

scores and some intuitive reasoning. Since the first two dimensions showed
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Figure 8.7: The adjective scores obtained from the adjective rating experiment for the adjective

pair of Rough - Smooth.

Figure 8.8: The adjective scores obtained from the adjective rating experiment for the adjective

pair of Flat - Bumpy.
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high correlation with the adjective pairs, this discussion will mostly focus

on them.

8.3.1 Pre-Judgment in Classification Time

In our daily life mostly we use our bare hands for interacting with different

surfaces. Due to familiarity, we can easily and quickly distinguish different

surfaces. At the start of the experiment, the average classification time for

one surface was around four to five seconds for both modes of interaction.

But after some time, as the participants grew accustomed to the surfaces,

the average time for bare handed interaction reduced to one or two seconds.

Since, we can gather a lot more information when we interact through our

hands, it became easy to judge surfaces immediately. In other words, the

participants used pre-judgment in classifying the surfaces. Whereas, the

classifying time for the tool based interaction almost remained constant

throughout the experiment. This was due to the fact that the information

passed on through a tool is very limited and it is difficult to get familiar

with the surfaces. This also means that in the tool based interaction, the

participants were using actual textural differences among the surfaces for

classification, which made the classification more accurate. Thus it is safe

to say that bare handed interaction has a higher classification speed while

tool based interaction can provide better accuracy.

8.3.2 Pre-Judgment in Texture Evaluation

The above fact can be proved by an example from the perceptual space.

The wooden surfaces form a typical example for pre-judgment, since it is

fairly easy to identify a wooden surface using our hands. It was noticed that

after a few trials as soon as a wooden sample was encountered by the par-

ticipants during the bare handed interaction, it was immediately classified
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into the group where other wooden surfaces were place. This classification

occurred irrespective of the texture differences. The wooden surfaces S12,

S21, S22, and S23 are located nearby each other in the perceptual space for

bare handed interaction (see Figure 8.5). In tool based interaction, where

the participants did not have direct contact with the surfaces, they used

the actual surface texture for classification by differentiating the smoother

wooden samples (S12, and S22) from the somewhat rougher woods (S21 and

S23).

Another example of prejudgment can be found in the form of the smooth

surfaces (S1 - S5). In the perceptual space for bare handed interaction, all

the smooth surfaces were tightly packed together, whereas in tool based

interaction the clustering was a little more diffused. This can be explained

by the Rough- Smooth adjective rating scores of these surfaces for both

modes of interaction. The bare hand adjective scores for all the smooth

surfaces are almost similar, which means that participants did not cater for

the texture differences. In tool based perceptual space, the very smooth

surfaces (S1, S2, and S4) form a separate cluster from the other smooth

surfaces (S3 and S5). This fact is also reflected in the adjective scores, i.e.,

S1, S2 and S4 have similar scores while S3 and S5 have lower scores.

8.3.3 The Masking Effect of Tool

When we interact with some object, the skin on our fingers gets deformed

according to surface texture of that object. This deformation provides us

cutaneous cues which help us in differentiating across textures. But in case

of tool based interaction, this information is not available to us. Instead skin

deformation occurs according to the shape of the tool. The only information

available to the skin is through the vibrations of the tool. This effect was

evident in the current comparison. The surfaces S16, a towel, and S8,
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artificial grass, are near to the rough cluster in the bare handed perceptual

space. Since these had quite rough texture, so they were correctly placed

near the rougher surfaces. However, in the tool based perceptual space,

these surfaces move away from the rough cluster. The roughness of these

surfaces was soft in nature. The vibrations created by this roughness were

not strong enough and due to the rigidity of the tool tip these vibrations

were masked and never reached the skin of the participant. As a result they

were perceived as smoother than they actually were.

8.3.4 Cross Modal Correlation Between Adjective Pairs

In the above discussion we mentioned some differences between the two

modes of interaction. In order to check as to how much did these differences

affect the perception across the two modes of interaction, we calculated

the correlation between the adjective pairs for both modes of interaction.

Table 8.5. The table shows that all the adjective pairs are very highly

correlated, which means that similarities existed between the two modes of

interaction, despite all the differences mentioned above.

Table 8.5: Correlation values between the adjective scores for bare handed and tool based

interaction.

Adjective Pair Correlation

Rough - Smooth 0.79

Flat - Bumpy 0.9

Sticky - Slippery 0.78

Hard- Soft 0.79

Irritating - Pleasant 0.84
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8.4 Chapter Summary

In this chapter we provided an in-depth analysis of the perceptual differ-

ences between tool based and bare handed interaction. Various attributes

associated with each mode of interaction were highlighted, which play a

part in differentiating one from the other. Evidence of pre-judgment was

found in bare handed interaction, while the masking effect in tool based

interaction was also proved. The implications of pre-judgment were also

discussed.



Chapter 9

Automatic Haptic Model Assignment to

Mesh Objects

In Chapter 7, we evaluated the automatic assignment algorithm by using 21

new texture surfaces, where a model was assigned to the complete surface

and it was assumed that the surface is uniform in texture, i.e., the surface

contains just one texture. However, in real life scenarios certain surfaces

may contain different surface textures. Moreover, most three dimensional

haptic rendering interfaces work with mesh models, where (theoretically)

every vertex is surrounded by a different texture. In such cases, we cannot

directly assign a haptic model to the whole surface or object.

In order to handle this problem, the surface texture around each ver-

tex was segmented and a unique haptic model was assigned to each of the

segmented region.

As a proof of concept study, a cube was designed having a total of 152

vertices. Different textures were assigned to the faces of the cube. The

surface texture was segmented into 152 parts (as we have 152 vertices), and

each part was assigned a haptic model from the library.

9.1 3D Mesh Object

A three dimensional mesh object in the form a cube was designed using a

graphics designing software, as shown in Figure 9.1. All the faces of the
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Figure 9.1: Mesh model of a cube having 152 vertices.

cube were wrapped with different textures. The surface texture image can

be seen in Figure 9.2.

9.2 Vertex Based Automatic Assignment of Hap-

tic Models to Mesh Object

In order to assign haptic models to the mesh, the surface texture around

every vertex was extracted. The texture surrounding a specific vertex was

considered for assigning a haptic model to the vertex. A window size of

300×300 pixels was cropped, having the associated vertex at the center. In

this way a total of 152 sub-images were extracted from the wrapped texture

image of the mesh model. A few of the sub-images can be seen in Figure 9.3.

Each sub-image was assigned a haptic model based on its image features

using the automatic assignment algorithm.
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Figure 9.2: The surface textures used to wrap the six faces of the cube.

Figure 9.3: A few of the sub-images extracted from the texture image of the mesh model.
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9.3 Chapter Summary

In this chapter we assigned haptic models to a mesh object in the form of

a cube. The assignment of haptic models was vertex based. The image

texture of the cube was segmented into smaller images surrounding all the

vertices. And the segmented images were used for assigning haptic models

to vertices using the automatic assignment algorithm.



Chapter 10

Conclusion and Future Work

This chapter provides a brief overview of the whole study. The significance

and possible applications of the overall framework are also discussed here.

Additionally, this chapter sheds some light on the possible future directions

for this research.

10.1 Conclusion

The main goal of the current study was to built a universal haptic tex-

ture models library and use the library for automatic assignment of haptic

texture models to various surfaces based on their image features. These

goals were achieved by establishing a relationship between perceived haptic

texture and image features of a given surface.

In order to built a library which can be used for assigning haptic texture

models to any arbitrary surface, it should cover the major aspects of the

daily life haptic interactions. For this purpose, a wide range of real life

texture surfaces were used in building the library. Afterwards, the haptic

perception information from these surfaces was captured by conducting a

psychophysical experiment and consequently building a perceptual space.

As a result of this experiment, a wide range of haptic perception information

was stored in the perceptual space. The next step was to pictographically

capture maximum haptic details of the texture surfaces used in building the
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library. In order to capture the majority of the haptic details, a large number

of image features were extracted from the surfaces. The perceptual space

built from the psychophysical experiment and the image features extracted

from the surfaces were combined in a relationship and this relationship was

used for automatically associating haptic properties with newly encountered

texture surfaces based on their image features.

The current study would go a long way in simplifying and standardizing

the haptic modeling process. The current study eliminates the need to

built a haptic model for every surface. Instead a perceptually similar haptic

model can be readily assigned to a given surface.

Another dilemma in the current haptics research is that most of the hap-

tic rendering systems employ tool based interaction while a majority of the

psychophysical experiments are carried out using bare hands. The current

study shed light on the differences between the two modes of interaction

and highlighted that they differ in some aspects. However, the two modes

of interaction operate quite similarly in a broad sense.

10.2 Future Work

A total of 84 different real life texture surfaces were used in the current study.

Although, this a large number of surfaces having myriad surface textures,

still there remains room for incorporating some totally different surfaces.

For example, using oily or wet surfaces, organic surfaces, deformable surfaces

etc. As a future direction, such surfaces can also be added to the library in

addition to current ones.

In the current study it was assumed that the haptic models contained

in the library are captured by data-driven modeling of the texture surfaces.

As a possible avenue for further investigation can be the field of haptic



10.2 FUTURE WORK 80

Figure 10.1: An example of haptic texture authoring.

texture authoring, where a haptic model is created from scratch instead of

data driven modeling. The relationship between haptic texture and image

features established in the current study can be generalized in this direction.

This can be best explained with an example. Figure 10.1 shows three real

life texture surfaces having well defined physical properties. The data driven

models for these surfaces are also available. But our need is to render a new

surface which can exhibit partial characteristics of the above mentioned

three surfaces. This can be made possible only if we know the relationship

between image features and the corresponding physical properties.
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tion of ecological textures by touch: does the perceptual space change

under bimodal visual and haptic exploration?” in Eurohaptics Con-

ference, 2005 and Symposium on Haptic Interfaces for Virtual Envi-

ronment and Teleoperator Systems, 2005. World Haptics 2005. First

Joint. IEEE, 2005, pp. 635–638.

[44] W. M. B. Tiest and A. M. Kappers, “Analysis of haptic perception of

materials by multidimensional scaling and physical measurements of

roughness and compressibility,” Acta psychologica, vol. 121, no. 1, pp.

1–20, 2006.

[45] C. E. Osgood and G. J. Suci, “Ph tannenbaum the measurement of

meaning,” University of Illinois Press, vol. 6, pp. 1880–1886, 1957.

[46] H. Shirado and T. Maeno, “Modeling of human texture perception for

tactile displays and sensors,” in null. IEEE, 2005, pp. 629–630.

[47] A. Giboreau, S. Navarro, P. Faye, and J. Dumortier, “Sensory eval-

uation of automotive fabrics: the contribution of categorization tasks

and non verbal information to set-up a descriptive method of tactile

properties,” Food quality and preference, vol. 12, no. 5, pp. 311–322,

2001.

[48] J. Pasquero, J. Luk, S. Little, and K. MacLean, “Perceptual analysis of

haptic icons: an investigation into the validity of cluster sorted mds,” in

Haptic Interfaces for Virtual Environment and Teleoperator Systems,

2006 14th Symposium on. IEEE, 2006, pp. 437–444.

[49] F. Wickelmaier, “An introduction to mds,” Sound Quality Research

Unit, Aalborg University, Denmark, p. 46, 2003.



REFERENCES 88

[50] R. A. Rao and G. L. Lohse, “Towards a texture naming system: identi-

fying relevant dimensions of texture,” in Visualization, 1993. Visualiza-

tion’93, Proceedings., IEEE Conference on. IEEE, 1993, pp. 220–227.

[51] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, “Textural fea-

tures for image classification,” Systems, Man and Cybernetics, IEEE

Transactions on, no. 6, pp. 610–621, 1973.

[52] L.-K. Soh and C. Tsatsoulis, “Texture analysis of sar sea ice imagery

using gray level co-occurrence matrices,” Geoscience and Remote Sens-

ing, IEEE Transactions on, vol. 37, no. 2, pp. 780–795, 1999.

[53] D. A. Clausi, “An analysis of co-occurrence texture statistics as a func-

tion of grey level quantization,” Canadian Journal of remote sensing,

vol. 28, no. 1, pp. 45–62, 2002.

[54] B. Julesz, “Visual pattern discrimination,” Information Theory, IRE

Transactions on, vol. 8, no. 2, pp. 84–92, 1962.

[55] B. Julesz, E. Gilbert, L. Shepp, and H. Frisch, “Inability of humans to

discriminate between visual textures that agree in second-order statis-

tics?revisited,” Perception, vol. 2, no. 4, pp. 391–405, 1973.

[56] M. Amadasun and R. King, “Textural features corresponding to tex-

tural properties,” Systems, Man and Cybernetics, IEEE Transactions

on, vol. 19, no. 5, pp. 1264–1274, 1989.

[57] M. M. Galloway, “Texture analysis using gray level run lengths,” Com-

puter graphics and image processing, vol. 4, no. 2, pp. 172–179, 1975.

[58] A. Chu, C. M. Sehgal, and J. F. Greenleaf, “Use of gray value distribu-

tion of run lengths for texture analysis,” Pattern Recognition Letters,

vol. 11, no. 6, pp. 415–419, 1990.



REFERENCES 89

[59] B. V. Dasarathy and E. B. Holder, “Image characterizations based on

joint gray level-run length distributions,” Pattern Recognition Letters,

vol. 12, no. 8, pp. 497–502, 1991.

[60] G. Thibault, B. Fertil, C. Navarro, S. Pereira, P. Cau, N. Levy, J. Se-

queira, and J. Mari, “Texture indexes and gray level size zone matrix

application to cell nuclei classification,” 2009.

[61] G. Elkharraz, S. Thumfart, D. Akay, C. Eitzinger, and B. Henson,

“Making tactile textures with predefined affective properties,” Affective

Computing, IEEE Transactions on, vol. 5, no. 1, pp. 57–70, 2014.

[62] J. Kannala and E. Rahtu, “Bsif: Binarized statistical image features,”

in Pattern Recognition (ICPR), 2012 21st International Conference on.

IEEE, 2012, pp. 1363–1366.

[63] D. Picard, C. Dacremont, D. Valentin, and A. Giboreau, “Perceptual

dimensions of tactile textures,” Acta psychologica, vol. 114, no. 2, pp.

165–184, 2003.

[64] I. R. Summers, R. J. Irwin, and A. C. Brady, “Haptic discrimina-

tion of paper,” in Human Haptic Perception: Basics and Applications.

Springer, 2008, pp. 525–535.

[65] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit

to a nonmetric hypothesis,” Psychometrika, vol. 29, no. 1, pp. 1–27,

1964.

[66] B. S. Manjunath and W.-Y. Ma, “Texture features for browsing and

retrieval of image data,” Pattern Analysis and Machine Intelligence,

IEEE Transactions on, vol. 18, no. 8, pp. 837–842, 1996.



REFERENCES 90

[67] A. Oonsivilai and N. Meeboon, “Silk texture defect recognition sys-

tem using computer vision and artificial neural networks,” in Image

and Signal Processing, 2009. CISP’09. 2nd International Congress on.

IEEE, 2009, pp. 1–4.

[68] B. Lee and Y. Tarng, “Surface roughness inspection by computer vision

in turning operations,” International Journal of Machine Tools and

Manufacture, vol. 41, no. 9, pp. 1251–1263, 2001.

[69] S.-Y. Ho, K.-C. Lee, S.-S. Chen, and S.-J. Ho, “Accurate modeling and

prediction of surface roughness by computer vision in turning opera-

tions using an adaptive neuro-fuzzy inference system,” International

Journal of Machine Tools and Manufacture, vol. 42, no. 13, pp. 1441–

1446, 2002.
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