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Abstract: Data-driven haptic modeling is an emerging technique where contact dynamics are
simulated and interpolated based on a generic input-output matching model identified by data
sensed from interaction with target physical objects. In data-driven modeling, selecting representative
samples from a large set of data in a way that they can efficiently and accurately describe the whole
dataset has been a long standing problem. This paper presents a new algorithm for the sample
selection where the variances of output are observed for selecting representative input-output samples
in order to ensure the quality of output prediction. The main idea is that representative pairs of
input-output are chosen so that the ratio of the standard deviation to the mean of the corresponding
output group does not exceed an application-dependent threshold. This output- and standard
deviation-based sample selection is very effective in applications where the variance or relative
error of the output should be kept within a certain threshold. This threshold is used for partitioning
the input space using Binary Space Partitioning-tree (BSP-tree) and k-means algorithms. We apply
the new approach to data-driven haptic modeling scenario where the relative error of the output
prediction result should be less than a perceptual threshold. For evaluation, the proposed algorithm
is compared to two state-of-the-art sample selection algorithms for regression tasks. Four kinds of
haptic related behavior–force datasets are tested. The results showed that the proposed algorithm
outperformed the others in terms of output-approximation quality and computational complexity.
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1. Introduction

In the last couple of decades, owing to its remarkable developments, virtual reality (VR) systems
have found applications in most scientific fields. A key aspect of VR is the provision of a high level of
realism where the user can act and behave in a life-like manner. Recently, VR has received tangibility
due to the inclusion of haptic feedback, which improved the realism and immersiveness of the system.

In general, the haptic feedback is calculated via physics simulation that determines the feedback
based on haptic models for the simulation and user’s actions. The haptic model can be either physics
based [1–7] or generic interpolation models [8–10]. The models for simulation can also be either
manually built or identified based on real measurement [11,12]. In particular, measurement-based
modeling using a generic interpolation model, namely data-driven modeling, is emerging in the
haptics research field [8–10]. This can prove highly beneficial for people with special needs [13]. In this
approach, input-output data pairs collected with sensors, are pre-processed, e.g., sample selection,
and are fed into the interpolation model training algorithm. The trained interpolation model is used
for predicting output based on interactive inputs during rendering. Data-driven approaches can deal
with very complex behaviors, e.g., inhomogeneous stiffness with large deformation, using a relatively
simple and unified framework.
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One of the challenging parts is to ensure the quality of input-output data for interpolation model
training. The data should be sufficient in terms of quantity and the area of coverage in the input
space. That is, the data pairs should thoroughly cover the all possible interactions to ensure the quality
of the model and presumably the quality of the output prediction. A simple solution for this is to
increase the number of data samples. However, without careful sample collection, some of these
data points can be redundant and do not provide any additional information. Moreover, increased
amounts of data inherently escalates the time taken for training and rendering. More seriously, when
the dimension of input space increases, the data points needed to sufficiently cover the input space
increase exponentially, which makes the training infeasible.

In order to overcome this, it has been proposed that only a part of the whole data set be
appropriately selected and used for training [14]. In data-driven haptic modeling, a few groups
are leading this research. For example, Hover et al. [14,15] designed a sample selection algorithm
based on k-d (k-dimensional) tree data structure for non-linear force feedback approximation, which
provided good results for rendering [14]. However, it tends to over segment in the low reference
force range. They used perceptual criterion, i.e., force perception Just-Noticeable-Difference (JND)
curve, in the selection process, and the forces below 0.1 N were not considered. Additionally, the
algorithm relies on the results from the approximation algorithm in each iteration. This shows that the
algorithm is dependent on the approximation algorithm, and it cannot be generalized for use with
most other approximation algorithms. Additionally, since the whole signal had to be reconstructed
in each iteration, the time complexity was also increased. More recently, Arnize et al. proposed
Discretization-based Condensed Nearest Neighbor (D-CNN) and Discretization-based Edited Nearest
Neighbor (D-ENN) as modified versions of Condensed Nearest Neighbor (CNN) and Edited Nearest
Neighbor (ENN) for regression tasks [16]. Both of the algorithms ensure a balanced selection of
samples throughout the sample space using equal-width binning of the uni-dimensional output signal.
This strategy ensures a low absolute error on the output estimates, but the relative error can be inflated
in the low reference stimuli range.

In the present work, we propose a novel sample selection algorithm, namely SMASS
(Stimuli-Magnitude-Adaptive Sample Selection), where the ratio between the standard deviation
and the mean for the output group is kept nearly constant. This approach is especially useful for
haptic modeling where the relative errors on the output predictions are needed to be kept below the
human perceptual discriminability that changes proportionally with the reference stimulus magnitude.
The algorithm is implemented with BSP-tree partitioning [17] of the input space using k-means guided
by corresponding output groups, which significantly increase efficiency of the modeling in terms of
the time taken to build the models. The main characteristics of the proposed algorithm are as follows:

- SMASS selects a high number of representative points when the reference stimulus is low, while it
selects a low number of points when the reference stimulus is high, which fits well to the human
perception characteristic: stimuli difference in small magnitude is more prone to be detected than
that in large magnitudes, e.g., humans can detect the difference between 0.3 N and 0.5 N but cannot
do it between 30.3 N and 30.5 N (see Section 5 for more details).

- SMASS processes multivariate output as a whole, unlike most other algorithms that work with
uni-dimensional projections of multivariate output data (one at a time). This significantly increases
the training efficiency when there are multiple dimensions in output.

- The computation speed of the proposed algorithm is very high due to its simplicity and the use of
the binary partitioning approach.

- Unlike previous approaches, both the input and output and their relationship are used for the
selection of representative samples. This allows an appropriate sample selection in the case when
closely clustered input points are mapped to sparsely distributed output points, and vice versa.
Previous approaches that only see input or output would fail to capture the relationship in such cases.
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The rest of the paper is structured as follows. The literature review is provided in Section 2.
The algorithm is described in Section 3. Then, the datasets and the data recording setup are described
in Section 4. The discussion in Section 6 is provided based on experimental results and evaluation
from Section 5. Finally, the paper is concluded in Section 7.

2. Related Works

Sample selection techniques are used to reduce the size of the dataset while preserving the
characteristics of the entire dataset. This reduction in size leads to increased efficiency, reduced storage,
and decreased computational complexity. A variety of approaches have been proposed for this purpose
with applications across different research areas. For example, in the field of computer vision, researchers
used sample selection algorithms for scene categorization in images and videos [18–20]. Evolutionary
algorithms for sample selection were used for text classification and traffic sign recognition in [21,22],
respectively. Sample selection algorithms are readily used in medical datasets in [23,24]. However,
sample selection techniques find most usage in the field of data mining. The authors in [25,26] used
scalable sample selection algorithms for dealing with very large scale datasets. Furthermore, [27] also
provides a data condensation algorithm for large datasets in machine learning.

For an overall view, the authors in [28–30] provide a taxonomy for the methods used for sample
selection, where the methods are classified on the basis of differences in type of selected samples, direction
of search for selecting samples, and evaluation of search. Previously, most of the sample selection algorithms
were used for classification of the dataset into sub-classes. This approach works well only when the
dataset is discrete and fails when the algorithms have to predict a continuous output. Additionally, the
number of sub-classes to be predicted are also very low. In order to tackle a continuous output and
achieve a higher number of sub-classes, recent research has focused on using regression for prediction.

The first usage of regression for sample selection can be accredited to [31]. Afterwards, the authors
in [32] used genetic algorithms for detection of outliers and sample selection in linear regression models
in the context of cross-section data. In [33], sample selection was carried out in the framework of
Multi Objective Evolutionary Learning (MOEL) of Fuzzy Rule-Based Systems (FRBSs) by using a
co-evolutionary method. With a reduced sample set of 10% and 20% of the overall dataset, they were
able to get results that were almost comparable to the results from the whole dataset. The computation
time was also reduced by over 85% with the reduced dataset. Recently, researchers have used
sample selection techniques, which were mainly applied to classification problems, for regression
tasks. In [34,35], the authors proposed algorithms which used modified versions of Edited Nearest
Neighbor (ENN [36]), Condensed Nearest Neighbor (CNN [37]), and CA [38] for sample selection for
regression. Another sample selection method, Class Conditional Instance Selection (CCIS [39]), was
modified for regression tasks in [40] and was applied for reducing variance in Genetic Fuzzy Systems
(GFSs). Furthermore, in [41], a simpler and more robust sample selection algorithm is proposed for
noise filtering. The main advantage of this method is that it can be applied to any sample selection
approach. Afterwards, the output is discretized into a predefined number of quantization levels
for regression purposes.

Recently, the authors in [16] used modified versions of CNN and ENN for regression. Two
strategies were presented; threshold-based (T-CNN, T-ENN), and discretization-based (D-CNN,
D-ENN). The threshold-based method is density driven. It selects or rejects samples based on the
comparison of error between given and predicted output values with a threshold value, while, in
the discretization-based method, the output is discretized into evenly spaced levels by employing
equal-width binning using leave-one-out estimated entropy technique.

Sample selection algorithms are used in various research fields; however, one common aspect of
all these algorithms is that they consider uni-dimensional projections of the output, which considerably
decreases the computational efficiency of the system in the case of multi-dimensional output. The
proposed algorithm tackles this problem by processing the output as a multivariate signal.
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Another important aspect for sample selection algorithms is the structure or distribution of
data points in space. Most of the algorithms assume that the data is homogeneously distributed or
clustered into separable groups. However, this might not be the case in most real-world scenarios.
In order to consider the effect of inhomogeniety of the data points, Li et al. in [42] considered the
Local Probabilistic Centers (LPC). The LPC was modified for higher dimensional datasets in [43].
In [44], Wen et al. presented a new algorithm called Relative Local Mean Classifier (RLMC) for dealing
with sparse high dimensional data. They transformed the Local Mean Classifier (LMC) [45], using
Euclidean distance, in accordance with the human visual perception ability for better classification.
This algorithm was further improved by considering the densities of classes in [46]. Furthermore,
the authors in [47] presented a new algorithm where dense regions were identified and an effort was
made to select fewer samples from those regions to avoid overfitting. In [48], the presented algorithm
gathers useful information from the neighborhood and heuristically organizes the local distribution
characteristics for faster classification accuracy and speeds.

Furthermore, most of the previous sample selection algorithms are used for classification purposes,
which are difficult to be directly applied to data-driven haptics where sample selection is used for
regression purposes. The present algorithm can be directly applied to this regression task. There are a
few algorithms for regression tasks. Among them, the state-of-the-art work was introduced in [16].
However, this algorithm again focuses on maintaining an absolute error, instead of a relative error.
A new approach is needed for the case where perception-related relative error is important.

Sample Selection in Haptics

In data-driven haptic modeling for virtual reality, which is closely related to the present work,
little research exists. For example, in order to deal with object inhomogeneity, Sianov et al. segmented
the dataset into relatively homogeneous regions during initial scanning phase [49]. Then, each region
was represented with a single set of data-points. The training complexity of their interpolation model,
i.e., radial basis function model, was reduced by applying l1 minimization technique.

In [15], the authors proposed three techniques for input-output point selection for non-linear
force feedback rendering incorporating visco-elastic nature of a soft body. The technique that provided
the best approximation was the k-d tree selection algorithm [14] which was adopted from the quad-tree
method in [50]. The barycenters of each leaf of the k-d tree form the representative set of samples.
The algorithm starts with an initial partition into two leafs and stops when the number of leaves reach
the desirable number of samples. The leaf that contains the worst approximated sample relative to the
force JND curve becomes a candidate for bisection.

Some parts of the above mentioned algorithms are dependent on approximation algorithm, and
thus it is sometimes not easy to apply the algorithms to general data-driven modeling. Thus, one of
the goals of the present work is to make a more general sample selection algorithm for data-driven
modeling. Additionally, in [14], the authors did not consider the forces below 0.1 N due to an
over segmentation problem in the low reference force range. The present algorithm solves this by a
magnitude adaptive sample selection strategy.

3. Stimuli-Magnitude-Adaptive Sample Selection Algorithm

3.1. Problem Definition and Approach

The core part of data-driven modeling is to train an interpolation model for mapping the input
dataset to the output dataset. The input points are sometimes gathered in a distinct group inside the
input space, whereas the corresponding output samples are scattered, or the other way around, as
shown in Figure 1. In this case, the sample selection strategy that observes only an input or only an
output set of data-points might provide a poor or even wrong set of representative samples. Instead,
the input grouping can be guided by corresponding output distributions, as an additional source of
information for selection procedure. In this section, we propose a novel sample selection algorithm
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that selects a representative set of input-output pairs based on ties between input and corresponding
output groups of points.

0 0X Y11

mn YX
Input space Output space

Figure 1. Example of an input-output relationship where a single group of inputs forms multiple
distinct groups in output space.

Suppose that all the input samples, S ∈ Rn, can be divided into i groups, Si, which can be
represented by a single vector, e.g., mean sample of Si. Then, in order to select representative
input-output pairs, the corresponding groups Ti from the output set T has to form distinct groups.
In addition, each group must show a relatively low variance. A relatively high variance of Ti indicates
that the data points are dispersed in the output space, which reduces applicability of the single
input-output pair as representative. The first constraint for this algorithm is to partition the set S, so
that the ratio of the standard deviation to the mean of corresponding subsets Ti is less then or equal to
a threshold τ, such that,

P = {Ti |
σi
µi
≤ τ, ∀i = 1, . . . , k}, (1)

where P is a set of k clusters that corresponds to the grouping of the input space Sk. The standard
deviation and the mean of subset Ti are denoted as σi and µi, respectively. The number of representative
pairs k varies in the range from 1 to the number of elements.

The second constraint for this algorithm is to find the minimal number of clusters k from the set
S so the corresponding clusters from T meet constraints in Equation (1). This minimum number is
the bottom line which merely guarantees a τ degree of accuracy. Once the minimal set of clusters
satisfying Equation (1) is selected, representative data pairs can be selected based on a predefined rule,
i.e., points closest to the mean from Si and Ti.

The first constraint uses the standard deviation to the mean ratio to ensure that the relative error
remains under the threshold τ. For example, a group of samples having a standard deviation of two
has a more pronounced effect if the mean value is 10 as compared to a mean value of 100. Therefore,
it is important to use this ratio in applications where the relative error has to be kept under a specific
threshold. Specifically, in the field of haptic perception, the difference between two stimuli, to be
perceptually discriminable, increases with the magnitude of the stimuli.

The second constraint is used for minimizing the total number of clusters. The constraint tries to
reduce the number of clusters while upholding the first constraint. Thus, the best solution is the one
where ratio of standard deviation to mean tends to τ for all clusters.
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In order to partition the input space while fulfilling the constraints, we need appropriate data
structure to (1) efficiently manage the search for the minimal number of groups; and (2) determine
appropriate partitioning strategy. The next section explains how our algorithm deals with these
requirements in a unified framework.

3.2. Algorithm

The input space can be partitioned and stored in different ways. The most common technique
used for this purpose is the use of the tree data structure. In this research, we used the BSP-tree
technique. It organizes the input into a form where each node is linked to a set of patterns (clusters).
Binary partitioning is carried out at each node until each leaf node is associated with a single data
pattern. The nodes store parameters related to the associated patterns which help in increasing the
computation speed of each iteration.

BSP-tree [17] and other such algorithms are used as a pre-processing step for k-means. According
to [51] the partitioning policy of BSP-tree (approximate hierarchical clustering) provides a higher
quality tree with higher intra-partition similarity that allows k-means to converge quickly. The BSP-KM
(Binary Space Partitioning K-Means) algorithm shows better scalability, lower computation time,
and higher efficiency, as compared to the k-d tree algorithm, as the dimensionality of the data space
increases. Motivated by the BSP-KM algorithm, we decided to use the BSP-tree to store the input
partitions, and k-means algorithm for leaf partitioning.

In this work, we redesigned the BSP-KM to find the optimal number of representative pairs from S
and T, that are conditioned by Equation (1). The algorithm starts with partitioning the input space into
two sets using the k-means clustering technique. In accordance to the sample indexes in each group of
Sk, the algorithm classifies the elements of the set Tk. Afterwards, the mean and standard deviation are
calculated for each Ti. If the ratio of the standard deviation to the mean of the group is less or equal
to the threshold value τ, the element closest to the mean of each cluster in Ti and the corresponding
element from Si of the leaf are marked as a representative pair. Otherwise, the algorithm continues
to split the leaf recursively. The algorithm stops partitioning when all leaves from Tk meet the above
mentioned condition. The final step is the traversal of the tree and extracting the marked pairs. Thus,
in the form of representative pairs, we select a subset of the overall dataset. Algorithm 1 shows the
pseudo code for the proposed algorithm.

Using the ratio of the standard deviation to the mean of the group, as a termination criteria for
selection algorithm, has one critical drawback. When the mean is equal to or very close to zero, the
algorithm tends to over segment. The number of selected samples might increase in a way that all the
samples close to zero are selected. In order to prevent this over sampling, an additional threshold ψ

is introduced. The threshold ψ defines the level below which the mean value of Ti is considered as
zero. Once the mean value of a given cluster is defined to be below ψ, the decision about partitioning
depends on the value of µi+σi. If the value of µi+σi is higher than ψ, partitioning continues. Otherwise,
the algorithm stops and returns the mean points of Si and Ti as representatives.

The value of ψ is dependent on the type of application and data. For example, in certain cases,
a value of 0.1 can be considered as a zero value, while in other cases, a value of 0.01 can also be
considered as a significant value. In the case of haptic applications, it is recommended to select ψ

according to the absolute threshold of haptic perception. Absolute threshold is the minimum amount
of stimulus that can be perceived by a human.
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Algorithm 1: Sample Selection
Data: Input set S, Output set T, Threshold τ
Result: Sk ⊆ S, Tk ⊆ T

Sk ← ∅;
Tk ← ∅;
Sk, Tk = getRepresentatives(S, T);

Function getRepresentatives (S’, T’)
Idxl , Idxr = kmeans(S, 2);
Tl , Tr ← T′(Idxl), T′(Idxr);
Sl , Sr ← S′(Idxl), S′(Idxr);
meanIndSl ← meanSample(Sl);
meanIndSr ← meanSample(Sr);
if mean(Tl) < ψ then

θl =
std(Tl)

mean(Tl)
;

if θl ≤ τ then
Sk ← Sk ∪ Sl(meanIndSl);
Tk ← Tk ∪ Tl(meanIndSl);

else
S′k, T′k ← getRepresentatives(Sl , Tl);
Sk ← Sk ∪ S′k;
Tk ← Tk ∪ T′k;

end
else

if std(Tl) + mean(Tl) < ψ then
Sk ← Sk ∪ Sl(meanIndSl);
Tk ← Tk ∪ Tl(meanIndSl);

else
S′k, T′k ← getRepresentatives(Sl , Tl);
Sk ← Sk ∪ S′k;
Tk ← Tk ∪ T′k;

end
end
if mean(Tr) < ψ then

θr =
std(Tr)

mean(Tr)
;

if θl ≤ τ then
Sk ← Sk ∪ Sr(meanIndSr);
Tk ← Tk ∪ Tr(meanIndSr);

else
S′k, T′k ← getRepresentatives(Sr, Tr);
Sk ← Sk ∪ S′k;
Tk ← Tk ∪ T′k;

end
else

if std(Tr) + mean(Tr) < ψ then
Sk ← Sk ∪ Sr(meanIndSr);
Tk ← Tk ∪ Tr(meanIndSr);

else
S′k, T′k ← getRepresentatives(Sr, Tr);
Sk ← Sk ∪ S′k;
Tk ← Tk ∪ T′k;

end
end
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4. Dataset Collection and Recording Setup

The proposed algorithm is evaluated in a typical haptic interaction scenario where a user (holding
a rigid tool) is touching a deformable object or a user is holding a deformable tool touching a rigid
object. The data input used in the scenario is multiple three-dimensional vectors capturing user’s
movement, and the output is the corresponding reaction force vector due to the stiffness of the touched
object. We selected this scenario since the haptic rendering of a deformable object is one of the most
challenging tasks in the haptics field, and the data-driven approach has proved to be the most proper
solution [10]. Since we are dealing with multiple three-dimensional vectors, a large amount of data
captured should be processed in the training. This scenario can be considered as a good example for
testing the algorithm.

The algorithm was evaluated with four different haptic datasets. Two datasets were collected
from deformable tools, i.e., a plastic spoon and a plastic fork, by palpating a rigid surface with the tools
(see Figure 2b). The other two were collected from deformable objects i.e., mock-up-1 and mock-up-2
(see Figure 2b). Data were recorded by palpating each deformable object with an 8 mm rigid tool.

Haptic
device

Force sensor

Deformable tool

Gimbal encoder

Tool-tip

A

B

(a)

Plastic
Spoon

Mock-Up-1Plastic
Fork

Mock-Up-2

(b)

Figure 2. The data collection setup and the samples for dataset extraction. (a) data collection setup:
A is the end effector for deformable tools. B is the end effector for deformable object with a rigid tool;
(b) the four samples used for establishing the datasets. The left two are the deformable tools; a spoon
and a fork. Both are made of elastic material. The right two are the deformable mock-ups made of
silicone. Mock-up-1 has a harder inclusion inside.

In order to collect data for our experiment, a data acquisition setup was built, as shown in
Figure 2a. We collected two three-dimensional vectors for capturing user’s movement: initial contact
position and displacement vector. The former is the position of the tool tip at the moment of initial
contact and plays the role of a reference point for the deformation. The latter is the relative distance
between the initial contact point and the current tool tip, which represents the degree of deformation.
Both the position data are measured using the position sensing capability of the haptic interface
(PHANToM Premium 1.0; Geomagic Inc., Rock Hill, SC, USA). The position sensing resolution is
0.03 mm. Different tools for interaction (see Figure 2a) were attached to the PHANToM end effector for
data recording. The three-dimensional force signal at the tool tip was captured using a force/torque
sensor (Nano17; ATI Technologies, Markham, ON, Canada) attached to the tools. The signal from
both sources was recorded at 1 kHz using NI DAQ acquisition board (PCI-6220; National Instruments,
Austin, TX, USA).

The data recorded from these datasets were in the form of input-output pairs. The output from all
the datasets was a three-dimensional force vector, whereas the input data varied depending on the
scenario. The displacement vector for the deformable tool scenarios (spoon and fork) was calculated
by measuring the distance of the tool tip between the initial contact point and the imaginary tool
tip position if there was no deformation. For the deformable object scenarios (with rigid tools) the
displacement vector was calculated by measuring the distance between the tool tip and the initial
contact point. Thus, each dataset consisted of six input attributes and three output attributes.
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The dataset from the spoon scenario represents general non-linear input-output mapping. A total
of 3843 data points were collected. The dataset from the fork scenario shows a more complex behavior
than the spoon due to the self-collision of its tines. A total of 3419 data points were collected. Mock-up-1
was made from silicon with stones embedded inside it, which alters the homogeneity of the mockup,
making the input-output relationship more complex. The size of the dataset was 8375. Mock-up-2 was
made purely from silicon, and the main characteristic of this dataset was to cover a larger scanning
area with varying speeds and palpation durations. This strategy made the dataset relative larger than
the others (21,537 data points), which will be available at an external link [52].

5. Experimental Evaluation

Since the proposed algorithm falls into the category of sample selection for regression tasks, two
recent algorithms D-ENN, and D-CNN [16] were selected for comparison. Along with the above
mentioned algorithms, Arnaiz-González et al., also proposed threshold based algorithms i.e., T-ENN,
T-CNN, and their ensembles. However, during our pilot tests, the latter algorithms showed a relatively
low compression ratio (large number of selected points) as compared to other algorithms, including
the proposed algorithm. The requirement of a low number of selected samples was imposed due to
the fact that these samples are involved in real time approximation in rendering. Additionally, since
the datasets were related to haptics where a minimum update rate of 1 kHz is required, the acquisition
of a low number of selected samples was paramount. These reasons contributed towards the exclusion
of the T-ENN, T-CNN, and their ensemble algorithms from the comparison for evaluation.

5.1. Parameter Selection

For evaluation purposes, the threshold value τ should be determined according to the application
and the nature of data. In order to find the optimal value of τ for our application, we analyzed the
effect of τ on relative force magnitude error in prediction (as shown in Figure 3a), absolute force
magnitude error in prediction (as shown in Figure 3b), and the number of selected samples (as shown
in Figure 3c). It was found that the value of τ is positively correlated with the absolute and relative
errors of reconstructed signal and negatively correlated with the number of selected samples. Thus,
the value of τ is a trade-off between the number of selected samples and the error rate. The value of
τ can be tuned to achieve a certain number of representative pairs or to minimize the error rate of
reconstructed signal to a certain level.

Figure 3c shows that the decrease in the total number of selected samples with the increasing value
of τ is not significant after τ equals 0.2, whereas the error values constantly increase with the increase
in the value of τ. Thus, selecting a value of τ greater than 0.2 proved less beneficial for the given
datasets, as the reduction in the number of samples was less significant as compared to the increase
in the error values. Therefore, it was decided to set the value of τ at 0.2. This value is considered
as optimal for the current datasets, but the value of τ for other datasets can also be calculated in a
similar fashion.

Since we are dealing with haptic force perception, the threshold value for ψ can be selected as
0.03 N following the absolute threshold of human perception [53]. The absolute threshold is the
minimum amount of force that a human can perceive. After setting the thresholds, the proposed
algorithm was used to determine the number of selected samples.

A special effort was made to choose an equal number of selected samples for all the algorithms
to provide a level ground for comparison. The parameters of the other algorithms were tuned to
make the number of selected samples approximately equal, while maintaining a high approximation
quality. These parameters included the number of discretization levels and k for the underlying k-NN
algorithm. This ensured that, besides the desirable number of samples, the best possible selection
accuracy is achieved. Additionally, D-ENN and D-CNN can only work with a uni-dimensional output
space; therefore, each dimension of the three-dimensional space was used iteratively, one at a time.
The final number of selected samples is shown in Table 1.
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(a) (b)

(c)

Figure 3. Input–output relationship and thresholds for low output magnitude description. (a) average
root-mean-square error (RMSE) vs. tau; (b) average mean-absolute-percentage error (MAPE) vs. tau;
(c) number of selected samples vs. tau.

Table 1. Number of selected samples. ki (i = x, y, z) is the number of samples per each output
dimension and kµ is their average.

D-ENN D-CNN SMASS

kx ky kz kµ kx ky kz kµ k

Spoon 114 ± 12 116 ± 18 107 ± 11 112 106 ± 2 110 ± 1 105 ± 3 107 111 ± 2
Fork 110 ± 3 121 ± 7 113 ± 8 114 100 ± 4 113 ± 2 101 ± 2 104 100 ± 2

Mock-up-1 134 ± 12 136 ± 8 133 ± 7 134 134 ± 1 136 ± 3 127 ± 4 132 131 ± 3
Mock-up-2 480 ± 34 493 ± 19 471 ± 26 481 483 ± 9 489 ± 11 479 ± 9 483 476 ± 6

5.2. Results

All of the algorithms, including the proposed algorithm, were implemented in
MATLABTM (R2014b), Natick, MA, USA, to provide a fair basis for comparison. The speed
of D-ENN and D-CNN algorithms depends on the computational complexity of the underlying k-NN
algorithm. Therefore, the k-d tree data structure was used for accelerating the k-NN algorithm. On the
other hand, the speed of the proposed algorithm depends on the speed of BSP-tree leaf partitioning.
For achieving a high computation speed, k-means++ algorithm [54] was used. The k-d tree and
k-means++ are available in MATLABTM.

For all of the algorithms, the radial basis function network (RBFN) was chosen as a base model
for output signal approximation. Selected data points by sample selection algorithms were considered
as the centers for RBFN. The cubic spline technique was selected as the kernel for RBFN. A weight
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vector and a polynomial term for RBFN was obtained using a SpaRSA algorithm [55]. The time for
RBFN training and approximation was not included for evaluation.

The performance results for all the algorithms were achieved using ten-fold cross validation.
Each dataset was randomly partitioned into ten equal sized groups, where nine groups were used for
training and one group was used for testing. The process was repeated ten times so that each group
was used for testing. The Mean Absolute Percentage Error (MAPE), Root Mean Square Error (RMSE),
and the average computation time are provided in Table 2. Both RMSE and MAPE were calculated
based on the magnitude of three dimensional error vector, i.e., the vector pointing from reference data
point to the approximated one in the three-dimensional space. The relative force magnitude error is
depicted in Figure 4. The absolute force magnitude error can be seen in Figure 5. It is evident from
Figure 4 that the relative error value for the proposed algorithm mostly lies below the value of 8%.
This 8% is the approximate value of haptic force JND, which does not vary with test conditions, body
sites or reference force [56,57]. JND is the minimum amount of difference between two stimuli due to
which they are perceived as different from one another. This rule was first proposed in [58], where
it was stated that JND depends on the intensity of the reference stimuli while the ratio (d) between
the difference in stimuli to the reference force (d = ∆ I/I) remains constant over a wide range of
intensities. The fact that humans cannot distinguish between forces that fall inside the JND threshold,
shows that it is possible to eliminate such forces from the data without compromising on the quality of
perception. The algorithms for which the relative error in the reconstructed signal falls below the JND
are considered as suited to haptic applications.

(a) (b)

(c) (d)

Figure 4. Mean plus standard deviation of the relative force magnitude error. (a) spoon; (b) fork;
(c) Mock-up-1; (d) Mock-up-2.
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Table 2. Performance comparison. MAPE is the mean absolute percentage error, RMSE is the root
mean squared error, t is the computation time (excluding signal approximation time). The bold face
values show the best values in the corresponding metric.

D-ENN D-CNN SMASS

MAPE RMSE t (s) MAPE RMSE t (s) MAPE RMSE t (s)

Spoon 0.1203 0.0615 171.43 0.2766 0.1217 95.73 0.0322 0.0215 1.7465
Fork 0.0649 0.0302 127.13 0.0760 0.0386 83.65 0.0261 0.0132 1.4912

Mock-up-1 0.1068 0.0529 561.56 0.1695 0.0935 204.53 0.0212 0.0148 1.7960
Mock-up-2 0.0834 0.0353 2767.5 0.1607 0.0596 538.15 0.0238 0.0258 7.7340

(a) (b)

(c) (d)

Figure 5. Mean plus standard deviation of the absolute force magnitude error. (a) spoon; (b) fork;
(c) Mock-up-1; (d) Mock-up-2.

6. Discussion

The relative error of proposed algorithm showed the best results across every dataset. Just a single
spike appeared above the JND level for the fork dataset only. For the spoon dataset, the proposed
algorithm considerably outperformed the others, especially for low reference forces in terms of relative
error magnitude. Similarly, the stability of the proposed algorithm was better through out the force
range, more so in the higher reference force range for the spoon dataset. The D-ENN algorithm showed
weaker performance for low reference force along every dataset in comparison to the proposed one.
It is worth considering that, in case of the Mock-up-1 and Mock-up-2 datasets, the D-ENN and the
proposed algorithm are comparable for high reference forces. However, several spikes appear on the
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relative error curve of D-ENN for high reference forces for most datasets, which causes instability. The
D-CNN showed the worst results for relative errors across every dataset.

The absolute error in reconstructed signals for the proposed algorithm showed stable error rates
along the whole range of forces. Only a few low magnitude spikes can be seen for forces higher than
0.4 N in the fork and spoon datasets. The proposed algorithm shows lower absolute error values, both
for low and high reference forces, as compared to other algorithms across all the datasets. Similarly,
the curve for the absolute error of the proposed algorithm shows higher stability. The worst result
was exhibited by D-CNN algorithm, especially for low reference forces. The absolute error curve for
D-ENN shows sudden spikes for all of the datasets. Summarizing the results of the absolute error,
we can conclude that the proposed algorithm showed the best results for low and high reference
forces. However, for the high reference forces, the D-ENN algorithm showed comparable results to the
proposed algorithm only in the Mock-up-2 dataset.

Computational time is another aspect that was observed for all of the algorithms. The time for
sample selection increases significantly for D-ENN and D-CNN with increasing number of samples in
the set. In this regard, the proposed algorithm outperforms the other two algorithms significantly. The
Mock-up-2 dataset contained the most samples, and the proposed algorithm completed the sample
selection task within eight seconds, while it took around 46 minutes for D-ENN and around nine
minutes for D-CNN to complete the said task. Details of the computation time for all the algorithms
across all datasets are provided in Table 2. Thus, for bulky sensory data, the proposed algorithm easily
outperforms the others.

The proposed algorithm is revealed as the most suitable for data-driven haptic modeling.
It showed the best performance for all datasets with the lowest relative and absolute errors (see Table 2).
The D-CNN and D-ENN algorithms showed relatively poorer performance on our datasets.

7. Conclusions

In this paper, a new algorithm was proposed for sample selection where representatives were
selected based on the ratio of standard deviation to the mean of a particular group of samples. Such a
strategy reduces the relative error by selecting more representatives from the low reference stimuli
region and selecting a low number of representatives from the high reference stimuli region. The
proposed algorithm was compared with two state-of-the-art algorithms for sample selection. The
results showed that the proposed algorithm outperformed the other algorithms across all the datasets.

Furthermore, the computational complexity of the proposed algorithm was significantly lower.
The significance of the proposed algorithm is that it can be used in any system where human perception
is involved. The algorithm finds its most application in virtual and augmented reality systems.

Selecting an optimal value for the threshold proved to be a critical step in the algorithm. Currently,
this value was selected analytically for the given datasets. As a future work, we would like to
incorporate our algorithm with a dataset invariant threshold selection mechanism so that the algorithm
can specify the thresholds without user intervention.

Furthermore, we would like to find the extent to which we can automate our algorithm, as in
certain cases human intervention proves more beneficial [59].
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