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	 Sample Selection of Multi-Trial Data for Data-Driven Haptic Texture
Modeling

Arsen Abdulali, Waseem Hassan and Seokhee Jeon

Abstract— In data-driven haptic texture rendering, the ren-
dering quality is highly dependent on the quality of the input-
output model training. The data in input model should be
sufficient both in terms of quantity and coverage of the input
space. Furthermore, the ever increasing input dimensions,
to attain more realistic rendering makes the task of model
building even more difficult. In order to address these problems,
this paper proposes a novel sample selection algorithm. Our
algorithm provides an efficient method of combining modeling
data across multiple independent trials, whereby the significant
model points are selected from each independent trial while the
outliers are being eliminated. This study also provides a generic
haptic model which equips other haptic modeling algorithms
to benefit from the sample selection algorithm. The algorithm
was evaluated using two isotropic and two non isotropic haptic
texture datasets. The results showed that the algorithm provides
upward of a two fold compression rate for model points, while
at the same time the rendering quality remains unaffected.

I. INTRODUCTION

Haptic texture rendering is an interactive process, where
the tactile response is computed with respect to the user
input, i.e., tactile interaction. This process is goverened by a
predefined haptic texture model. The haptic texture model
simulates the underling physics of contact [1] or blindly
relates the input to the response based on observations from
real interactions [2]. The latter approach for haptic texture
modeling is referred to as the data-driven approach. This
approach forgoes any knowledge of underlying physics or
parameter tuning which is required in the former. Hence, the
data-driven approach is considered as more applicable from
an end user perspective.

The main aspects of a data-driven haptic texture model are
the inputs and outputs of the system. The output can attain
the form of modulated vibrations [2], [3] or friction [4], [5]
based on the capabilities of the sensing organs,i.e. Meissner’s
and Pacinian corpuscles.

On the other hand, the input of the system can be very
complex. Research on the input of data-driven model de-
sign started as a two-dimensional space, i.e., the velocity
magnitude and normal force [3]. Such an input space was
used to model isotropic haptic textures. Recently, anisotropic
haptic textures were modeled by applying three-dimensional
input [2], where the velocity magnitude was replaced by
a two-dimensional velocity vector. Furthermore, this model
has a flexible design that allows an increase in the input di-
mension. However, further increases of the input dimensions
might make the data-driven approach impractical.
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One of the weak aspects of any data-driven modeling
technique is that the input space must be covered evenly
by model points, whereas each model point must have
an accurate feedback pattern, e.g., vibration signal. Sparse
regions inside the input space can lead to significant re-
ductions in the rendering quality, or even instability of the
system. Hence, it can prove to be a challenging task to
collect enough data to cover even a two-dimensional input
space. Furthermore, if we increase the input space to three
dimensions, covering the whole space can be a tedious task
and can easily lead to an uneven covering of the space. One
solution to this problem can be to gather data across multiple
trials and concatenate it into a single model. In this case,
every additional recording trial will contribute towards the
model space coverage. However, a possible drawback can be
that only a few points from each subsequent recording trial
contribute to the model space, whereas the rest prove to be
redundant. Additionally, another problem can be the number
of outliers which might also increase with every additional
recording trial.

This paper aims to drive the data-driven haptic texture
modeling approach in a new direction by applying a novel
concept of multi-trial data collection. The current study
proposes an algorithm, which selects the representative set
of model points from every trial and tries to remove the
outliers. The resultant set of model points achieves the same
level of rendering quality while providing the flexibility
of increasing the input dimensions. Furthermore, a generic
haptic texture model is also provided which ensures that the
current algorithm can readily be used with any haptic texture
modeling algorithm.

The rest of the paper is structured as follows. The back-
ground knowledge about haptic texture modeling and the
sample selection in the field of haptics is provided in Sec. II.
The proposed algorithm is described in Sec. III. In Sec. IV,
the experimental setup and procedure is explained. The
experimental results are reported in Sec. V, followed by
conclusion and and future work in Sec. VI.

II. BACKGROUND

Initial efforts on haptic texture modeling originated from
the texturing techniques in computer graphics, where the
main goal was to create a spatial representation of the micro
geometry of the surface. In [6], it was assumed that the
micro geometry of the texture can be described by the
change of the pixel magnitude of the gray scaled image
of the surface. Thus, the haptic texture was reconstructed
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by using this shading information in the form of a bump-
map. Similarly, Minsky et al. proposed an approach, where
spatially periodic patterns of the surface texture were used for
a virtual spring perturbation [1]. This method was improved
in [7] by applying a stochastic generator of force fields.
These approaches were able to model perceptually describ-
able surfaces, meaning that it was possible for user to point
out at the surface which had been felt more or less rough.
However, due to the lack of the real contact information in
modeling, the feedback from these methods was unrealistic.

The contact information has significantly improved the
rendering quality by applying data-driven modeling tech-
niques, where the resultant model is trained based on the
data that are collected during physical interaction with a real
surface. Regardless of object properties and micro geometry
of the surface, the data-driven model treats the user contact as
a multidimensional input and maps it with the corresponding
output, i.e., vibration or friction modulations.

In general, the data-driven modeling of haptic textures
consists of three steps: data collection, data preprocessing
and segmentation, and model building [2]. The data are
usually collected during free exploration of the object sur-
face or using a special recording machine [8]. The manual
data recording requires sophisticated segmentation algorithm,
which performs segmentation along the input or output
spaces. The resultant set of segments consists of input vectors
and corresponding vibration or friction patterns, which are
used for the model building.

In [9] the two-dimesional input vector (normal force and
velocity magnitude) of each acceleration pattern of vibrations
denoted the position inside the look-up table, where the
model output is approximated by using bilinear interpolation
of four nearest model points. The acceleration pattern of each
node is encoded into linear predictive coding (LPC) coeffi-
cients. This approximation model was improved in [3], by
encoding acceleration patterns into auto-regressive moving
average (ARMA) coefficients and by using Delaunay triangu-
lation for model points interpolation. An alternative solution
was proposed by Shin et al., where a frequency decomposed
neural network was used instead of the look-up table, with
similar input and output [8]. The most recent work is devoted
to modeling and rendering of anisotropic haptic textures with
three-dimensional model space [2], [10]. In this approach,
the movement direction was implied by an additional two-
dimensional velocity vector. The output acceleration patterns
were encoded into line spectral frequency (LSF) coefficients.

All these data-driven haptic texture models have a com-
mon concept. The interpolation model gets the input vector
and produces the time series output, meaning that a single
input vector produces a continuous signal of the feedback
pattern, i.e., vibration or variable friction. This similarity
makes data-driven haptic texture models interchangeable. By
relying on this commonality, this paper presents the cross-
model sample selection algorithm.

Various sample selection algorithms were proposed for
data-driven modeling of force responses during an object
deformation. Sianov et al. proposed the method of spatial

segmentation of the object into relatively homogeneous
regions, where each region was represented by data of a
single palpation [11]. In their other work, three algorithms
were introduced for the selection of representative input-
output data pairs [12]. The technique that provided the best
approximation was based on k-d tree data structure, where
barycenters of each leaf of the tree form the representative set
of samples. The alternative approach was presented in [13],
where the input space was partitioned in a way that the ratio
of the standard deviation of corresponding output cluster
to its mean remains below the perceptual threshold. Mean
samples of each cluster are selected as representative. The
main advantage of this approach is that it deals with a
multidimensional output stimuli.

A wide range of sample selection algorithms are available
in machine learning and data mining literature [14]. However,
most of them are designed for classification and regression
problems. The output of the model in classification problem
is a class label. Meanwhile, the model output in regression
problem is a continues value. In both cases, single input
vector has a constant corresponding output value. On the
other hand, the output of the data-driven haptic texture model
is a feedback pattern, which is represented by a time series
signal. Thus the available literature algorithms are unsuitable.

III. ALGORITHM

In this section, we propose a novel algorithm for represen-
tative sample selection across multiple recording trials. The
main aim of this algorithm is to populate the input space by
significant model points from multiple trials while reducing
the number of outliers. Furthermore, a generic haptic texture
model is also provided. This generic model provides the
necessary platform to other haptic texture modeling algo-
rithms to benefit from the aforementioned sample selection
algorithm.

Despite the fact that none of available sample selection
algorithms can be directly applied to model point selection
for data-driven haptic texture modeling, the idea of several
sample selection algorithms can be generalized and extended
for this task. For example, Edited and Condensed Nearest
Neighbor (ENN [15] and CNN [16]) were initially designed
for classification task based on k-Nearest Neighbors (k-
NN) classifier. The former algorithm is usually used for
outlier reduction, whereas the later one eliminates redundant
samples from the given set. Recently, Arnaiz-Gonzalez et al.
adopted the idea of CNN and ENN for regression tasks [17].

Inspired by the work in [17], we extended the idea of
ENN and CNN for the representative model point selection
for data-driven haptic texture modeling. Instead of using the
k-nn classifier, the general haptic texture model can be used
in our approach. Before going into details about the proposed
algorithm, we provide a brief introduction of the general
haptic texture model.

A. General Haptic Texture Model

The evolution of the haptic texture models is provided in
Sec. II. Even though all haptic texture models have their own
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Algorithm 1 Sample Selection Algorithm
Input: M = {(x1,y1), ...(xn,yn)}, k, l, τ1, τ2
Output: M̂ ⊆M

Removing outliers:
1: ρ ← getAverageSparsity(M)
2: for i = k+1 to |M| do
3: model← train(M \{xi,yi})
4: ŷi← model.simulate(xi)
5: d← getDistance(yi, ŷi)
6: ρ̂ ← getLocalSparsity(mi,M)
7: θ ← τ1 +α ∗ (ρ̂/ρ−1)
8: if (d > θ ) then
9: M←M \{xi,yi}

10: end if
11: end for

Removing redundant patterns:
12: M̂←{(x1,y1), ...(xk,yk)}
13: for j = k+1 to |M| do
14: model← train(M̂∪{x j,y j})
15: ŷ j← model.simulate(x j)
16: d← getDistance(y j, ŷ j)
17: if (d > τ2) then
18: M̂← M̂∪{x j,y j}
19: end if
20: end for
21: return M̂

contributions, the conceptual representation of most models
remain similar. The model space is an abstract coordinate
system that describes the location of model points. Each
model point is described by a location inside the model
space and the feedback pattern mi = {xi,yi}, where xi denotes
the n− dimensional vector of the model points location,
and yi represents the feedback pattern yi = {a1,a2, ...,an}.
Thus the general haptic texture model can be described by
the set of model points M = {m1,m1, ...,mp}. An example
is provided in Fig. 1. Since the data-driven model in most
cases is an interpolation model, a given minimal set of model
points Mmin is required for a stable output. In some case the
Mmin consists of the synthetic model points, which marks the
interpolation boundaries.

B. Proposed Algorithm

The pseudo code of the proposed method is depicted in
Algorithm 1. The algorithm starts with the outlier reduction
procedure (See lines 1 - 11), which is followed by redundant
sample elimination (See lines 12 - 21). The input of the
algorithm consists of an initial set of model points M =
{{x1,y1}, ...{xn,yn}}, where the first k elements form the
minimal set of model points. Threshold values τ1 and τ2 are
used to control the reduction rate of outliers and redundant
model points, respectively.

Outlier Reduction is an iterative process over the initial set
M, where each model point mi = {xi,yi} is examined one at
a time, starting from the (k+1)th element of the set. In each
iteration, one model point is temporarily removed from the
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Fig. 1. General haptic texture model

initial set M \ (xi,yi). The resultant set is used for the model
training. Following this, the feedback pattern ŷ is estimated
by feeding the input vector xi to the model. If the estimated ŷi
and original yi feedback patterns are considerably different,
the probability that ith sample is an outlier increases. This
dissimilarity means that the contribution from the feedback
pattern yi contradicts to contributions of the neighboring
ones. The dissimilarity between two feedback patterns is
calculated by a dissimilarity metric, which is explained at the
end of this section. The threshold value τ1 denotes the level
of dissimilarity, at which the model point is permanently
removed from the set M.

This outlier detection strategy works well for dense re-
gions, where the model point resembles to the neighboring
ones. However, it can be misleading for sparse regions. The
neighboring model points in sparse regions are usually dif-
ferent, since they are far from each other. Thus the threshold
τ1 should be adaptive to the local density of the model
space. In order to solve this problem, the regularization term
α ∗ (ρ̂/ρi − 1) is introduced, where ρ̂ and ρi are average
and local sparsity of the model space respectively. When the
local sparsity equals to the average one, the regularization
term turns to zero. Similarly, when the local sparsity is
higher then the global one, the adaptive threshold value θ

is increased, and the other way around. The parameter α

represents the sensitivity of the algorithm to the local density.
It is recommended to estimate the α by using the following
equation.

α = τ1 ∗
σ̂

ρ̂
, (1)

where the σ̂ denotes the mean deviation of local sparsity
at each model point from the average sparsity ρ̂ . In order
to estimate the local sparsity ρi of each model point mi
for a two-dimensional model space, we built the Delaunay
triangulation by excluding the target model point mi, and
computed the average distance from mi to three enclosing
neighbors. Similarly, the average distance to four surrounding
model points of the tetrahedron represented the local density
for a three-dimensional model space.

Redundant Sample Elimination. Unlike the previous stage,
the process of redundant sample elimination starts with the
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Fig. 2. Haptic Texture Datasets

minimal set, which contains only k model points. In every
iteration, the haptic texture model is trained by using the
set M̂. The set M̂ is extended by the candidate model point
mi, if the difference between the original and simulated
feedback patterns exceeds the threshold τ2. This iterative
process finishes when all samples from M are assessed.

C. Error Metric

The error metric used for comparing the acceleration
patterns is the spectral rms error. It is the difference between
the approximated â[n] and the recorded acceleration pattern
a[n]. The equation for spectral rms error is given as:

En = en(â[n]) =
RMS(F(â[n])−F(a[n]))

RMS(F(a[n]))
, (2)

where RMS is the root mean square operator in the frequency
domain, and F(.) is the discrete Fourier transform. This error
metric is preferred since it provides a better account of the
perceptual differences as compared to the time domain error
metrics.

IV. EXPERIMENTAL SETUP AND RESULTS

In this section, the performance evaluation of the proposed
algorithm is provided. The algorithm performance can be
considered as reliable, if it successfully achieves certain per-
formance metrics. First, it should achieve a higher rendering
quality after data reduction or at worst remain the same as
earlier. Second, the number of outliers in the reduced data-set
should be minimized. Last, the algorithm should be flexible
enough to incorporate a multidimensional model space, i.e.,
the effect of increase in input dimensions should remain
minimal.

In order to meet the above mentioned performance metrics,
it was decided to use the data-driven model of anisotropic
haptic textures [2] as an underlying model for the pro-
posed sample selection algorithm. This model relates three-
dimensional input (two-dimensional velocity vector, and nor-
mal force) with an acceleration pattern of vibrations gener-
ated from a tool-surface contact. Additionally, by replacing
the three-dimensional input with a two dimensional one,
this algorithm can readily be used to represent the isotropic
textures as well.

A. Recording Setup and Dataset

The data from a tool-surface interaction are recorded by
using a custom recording setup, which is illustrated on Fig. 3.
The tool-surface interaction can be described by the position
of the tool-tip, normal force and the vibration response.

Fig. 3. Recording setup

The tool-tip position is tracked based on the position and
orientation of three markers using an optical tracking device
(V120:Trio; OptiTrack). The normal force is estimated based
on the tool orientation and three dimensional force signal,
which is acquired from a force/torque sensor (Nano17; ATI
Technologies). Contact vibrations are recorded by a three-
axis accelerometer (ADXL335; Analog Devices), where the
acceleration signal along the normal direction of the sample
surface was used for an experiment. The force/torque sensor
and accelerometer are connected to an NI DAQ acquisition
board (PCI-6323; National Instrument). A desktop PC with
i7-6700K CPU and 32 Gb DDR-4 RAM was used for data
collection and processing.

In order to evaluate the proposed algorithm, a dataset
containing two isotropic and two anisotropic haptic textures
was selected (see Fig. 2). Isotropic textures were scanned 20
times, where the duration of each scan was 20 seconds. The
number of acquisition trials for anisotropic haptic texture was
40, whereas the trial duration was 20 seconds. The diameter
of the tool tip used for recording was 3 mm.

B. Model Point Extraction

As a first step, the set of model points and corresponding
acceleration patterns are extracted from the raw data. The
raw signals from every recording trial are concatenated into a
single data sequence. The position and normal force signals
are low-pass filtered by using a Bessel filter with a cutoff
level of 20 Hz. The acceleration signal was band-pass filtered
with the bandwidth limits set at 10 and 1000 Hz. The lower
limit filters out the gravity component, whereas the upper
limit removes the noise.

A two-dimensional velocity signal is derived from the
position data. The velocity signal and normal force are
normalized from 0 to 1 and are used as an input signal for the
anisotropic haptic texture model. In case of isotropic haptic
textures, the two-dimensional velocity signal is replaced by
the velocity magnitude , which is in turn normalized in the
same way.
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Fig. 4. Mean Goodness-of-Fit Criterion (GFC) for comparison between the
original and reduced datasets. The error bars represent the standard deviation
of GFC values.

In order to extract model points and corresponding vibra-
tion patterns, the input-space-based segmentation algorithm
from [2] was used. This sample selection algorithm requires a
minimal set of samples that guarantee a stable output during
the selection process. Therefore, it was decided to compute
convex hulls for each dataset and extract the boundary model
points of the convex hull to form the above mentioned
minimal set. This ensures that the sample selection process
will be performed inside the convex hulls.

Since the proposed algorithm is iterative in nature, it is
recommended to randomize the order of the model points
before sample reduction. However, in the current study, it
was empirically established that the data points are already
scattered in a random fashion and further randomization was
not required.

C. Outlier Generation

The performance of the outlier reduction algorithm can
be measured by the detection rate. The detection rate is the
ratio of the number of detected outliers to the total number of
outliers. However, the detection of outliers within a given set
requires a high level of deliberation. One possible solution
can be to assume that the given set of model points is free of
any outliers and manually include a synthetic set of outliers
to it.

The synthetic set of outliers can be generated within
the given set of model points by adding a noise signal to
the corresponding vibration signal. However, the addition
of simple colored noise can be unrealistic and prone to
manipulation.

Another possible solution is to simulate the noise that
causes the vibration signal distortion during the data col-
lection process. The data from the object surface is usually
collected on a table. In this case, mechanical noises propagate
through the table and are recorded along with the vibration
responses from the tool-surface interaction. It is next to
impossible to filter out such noises from the vibration signal,
since both the vibration and noise signals share a similar
frequency band.

TABLE I
HAPTIC TEXTURE DATASETS

Initial set Minimal set Outliers Texture type
Grass 236 15 23 isotropic
Cardboard 253 18 25 isotropic
Wood 432 72 43 anisotropic
Washcloth 461 68 46 anisotropic

TABLE II
SELECTION RESULTS

Detected outliers Compression rate Performance gain
Grass 18 / 23 = 0.78 236 / 87 = 2.71 -0.0059
Cardboard 20 / 25 = 0.80 253 / 104 = 2.43 0.0078
Wood 32 / 43 = 0.74 432 / 202 = 2.13 -0.051
Washcloth 32 / 46 = 0.69 461 / 181 = 2.54 -0.0092

A wide range of mechanical noises can be encountered
during the data collection process. The noise signals used
in this study were collected from the sudden collision of
third-party objects with a table in home, office, or library
environment. Six such noise signals were extracted from the
dataset provided in [18]. The duration of each noise signal
was 2 seconds. These noise signals were down-sampled to a
1000 Hz sampling rate and high-pass filtered with a 10 Hz
cutoff frequency. Afterwards, we selected 10% of the model
points from each dataset and added noise to its corresponding
vibration pattern. In order to make the experiment fair, the
noise signal was normalized using the following equation.

A′i = Ai +Ni ∗
σa

σn
∗
√

θ , (3)

where θ denotes the target ratio of the variance of noise
signal Ni to the variance of the vibration pattern At . σn
and σa represent variance of the noise signal and vibration
pattern, respectively. In other words, equation 3 normalizes
the noise signal in such a way that the resultant variance of
the noise is θ times the variance of the vibration pattern.
The value of θ for this experiment was set at 0.4. This
value is considered optimal, since it allows Ai to remain the
main contributor to the resultant signal A′i, whereas the noise
content is also maintained at such a level that it remains
perceptually discriminable.

V. EVALUATION

In this section, the proposed sample selection algorithm
was evaluated using the four datasets (See Table I) discussed
in the previous sections. In order for the sample selection
algorithm to perform successfuly, reasonable threshold val-
ues must be selected. These threshold values (τ1 and τ2)
were selected in accordance with studies reported in [19],
[8]. They evaluated their algorithms using the same error
metric, i.e., relative spectral RMS. According to [19], [9]
and later validated by [8], it is reasonable to consider an
error in the range 0.29 - 0.42 as perceptually insignificant.
Therefore, the value of τ1 and τ2 was set at 0.25 and 0.42,
respectively.

The proposed algorithm was executed using the thresholds
mentioned above. The performance of the algorithm was
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measured using several metrics. First, the rate of outlier
detection was calculated, i.e., the number of true outliers
detected as compared to the total number of outliers. Second,
the compression rate of the algorithm was calculated, i.e., the
reduction in number of data points after sample selection.
The results for these two metrics are provided in Table II. It
can be seen that the algorithm shows a high outlier detection
rate for all the datasets. Furthermore, it also provides atleast
a two fold compression rate across all the datasets.

Since, the ground truth data of the redundant subset of
model points is not available, it is impossible to calculate
the confusion matrix for the proposed algorithm. However,
in order to evaluate if the proposed algorithm has removed
significant model points, we compared the approximation
performance of the original and the reduced datasets. For this
purpose, new data was collected from tool-surface interaction
for all datasets. The interaction time for this data was 10
seconds. The output vibration patterns from this data were
considered as ground truth for evaluating the two point
models. While, the input data was used as a test input for
the algorithms. The approximated vibration patterns from
the two point models were compared with the ground truth
vibration patterns. This comparison was carried out using
a Hernandez-Andres Goodness-of-Fit Criterion (GFC) to
calculate the error between the power spectrums. According
to this metric, a value of zero means no linear relationship,
while a value of one means perfect reconstruction. Further-
more, the authors in [20] provide that a GFC value greater
than 0.90 is considered as a good match. The procedure
provided in [2] is followed to compute the mean GFC values.
We refere the reader to [2] for the detailed description.

The mean GFC values for both the point models are
provided in Fig. 4. It can be seen that the point models show
almost the same level of accuracy. The relative difference of
the two models is called as performance gain, showed in
Table II. Here, a negative performance gain indicates that
the reduced point model provided an accuracy value lower
than the original point model.

VI. CONCLUSIONS AND FUTURE WORKS

In this study, a novel algorithm for representative sample
selection across multiple tool-surface interaction recording
trials was proposed. This algorithm can pave the way for
seemlessly increasing the dimensionality of input model
space for data-driven haptic texture rendering. Furthermore,
it can be readily used with any underlying haptic modeling
algorithm, without compromising on the rendering quality.

In the current algorithm, the outlier detection is carried out
iteratively. In certain cases the iterative nature of detection
can lead to erroneous results i.e., it can introduce an ordering
bias where a true outlier remains in the data due to the earlier
wrong detection of a data point. As a possible avenue for
future research, a robust technique needs to be developed
to ensure against any such ordering bias. Additionally, the
outlier detection rate of the algorithm should be higher as
compared to the current state to provide an even higher
rendering quality.
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[17] Á. Arnaiz-González, M. Blachnik, M. Kordos, and C. Garcı́a-Osorio,
“Fusion of instance selection methods in regression tasks,” Information
Fusion, vol. 30, pp. 69–79, 2016.

[18] A. Mesaros, T. Heittola, and T. Virtanen, “Tut acoustic
scenes 2016, evaluation dataset,” Nov. 2016. [Online]. Available:
https://doi.org/10.5281/zenodo.165995

[19] J. M. Romano, T. Yoshioka, and K. J. Kuchenbecker, “Automatic
filter design for synthesis of haptic textures from recorded acceleration
data,” in Robotics and Automation (ICRA), 2010 IEEE International
Conference on. IEEE, 2010, pp. 1815–1821.

[20] H. Culbertson, J. M. Romano, P. Castillo, M. Mintz, and K. J.
Kuchenbecker, “Refined methods for creating realistic haptic virtual
textures from tool-mediated contact acceleration data,” in Haptics
Symposium (HAPTICS), 2012 IEEE. IEEE, 2012, pp. 385–391.

71

Authorized licensed use limited to: Kyunghee Univ. Downloaded on September 23,2021 at 01:47:03 UTC from IEEE Xplore.  Restrictions apply. 


